This shows you the differences between two versions of the page.
| Both sides previous revision Previous revision Next revision | Previous revision | ||
|
vpde_lecture25 [2020/03/31 08:26] trinh |
vpde_lecture25 [2020/04/04 21:33] (current) trinh |
||
|---|---|---|---|
| Line 2: | Line 2: | ||
| This lecture will do apply separation of variables and Fourier series in order to solve for the wave equation on a finite interval. | This lecture will do apply separation of variables and Fourier series in order to solve for the wave equation on a finite interval. | ||
| + | |||
| + | < | ||
| + | <iframe width=" | ||
| + | </ | ||
| ===== Definition 16.1 (1D wave equation with homogeneous Dirichlet BCs ===== | ===== Definition 16.1 (1D wave equation with homogeneous Dirichlet BCs ===== | ||
| Line 39: | Line 43: | ||
| u_n(x, t) = \sin\left(nx\right) \left[ A_n \cos(nct) + B_n \sin(nct)\right] | u_n(x, t) = \sin\left(nx\right) \left[ A_n \cos(nct) + B_n \sin(nct)\right] | ||
| $$ | $$ | ||
| + | |||
| + | < | ||
| + | % Code for MA20223 30 Mar 2020 | ||
| + | clear | ||
| + | close all | ||
| + | |||
| + | % Length and time | ||
| + | L = pi; T = 2*pi/(c*n); | ||
| + | |||
| + | % Function | ||
| + | n = 2; c = 1; | ||
| + | un = @(x,t) sin(n*x/ | ||
| + | |||
| + | % Make vectors for space and time | ||
| + | x = linspace(0, pi, 50); t = linspace(0, 2*T, 50); | ||
| + | |||
| + | % Create a mesh of x vs. t | ||
| + | [X,T] = meshgrid(x, | ||
| + | |||
| + | % Matrix of U values to imagine the surface | ||
| + | U = sin(n*X).*cos(n*T); | ||
| + | |||
| + | figure(1); subplot(1, | ||
| + | |||
| + | subplot(1, | ||
| + | % Plot the surface and make it pretty | ||
| + | s = surf(X, | ||
| + | view([-48, 17]); xlabel(' | ||
| + | hold on | ||
| + | |||
| + | % Plot an animation in time | ||
| + | for j = 1: | ||
| + | tt = t(j); uu = un(x,tt); | ||
| + | | ||
| + | subplot(1, | ||
| + | plot(x, uu); | ||
| + | ylim([-1, | ||
| + | | ||
| + | subplot(1, | ||
| + | if j == 1 | ||
| + | p = plot3(x, tt*ones(size(x)), | ||
| + | pause; | ||
| + | else | ||
| + | set(p, ' | ||
| + | end | ||
| + | | ||
| + | drawnow | ||
| + | shg | ||
| + | end | ||
| + | </ | ||
| + | |||
| + | ==== Implementation of the Fourier series ==== | ||
| + | |||
| + | Now we need to look to solve for the coefficients of our series by applying the boundary conditions. We have that | ||
| + | $$ | ||
| + | u(x, t) = \sum_{n=0}^\infty \sin\left(\frac{n\pi x}{L}\right) \left[ A_n \cos\left(\frac{n\pi ct}{L}\right) + B_n \sin\left(\frac{n\pi ct}{L}\right)\right] | ||
| + | $$ | ||
| + | |||
| + | Imposing the initial displacement, | ||
| + | $$ | ||
| + | u_0(x) = \sum_{n=0}^\infty A_n \sin\left(\frac{n\pi x}{L}\right), | ||
| + | $$ | ||
| + | |||
| + | which we recognise as the sine series for the odd $2L$-periodic extension of the function $u_0(x)$ originally defined on $[0, L]$. So the coefficients are (see theorem 12.7) | ||
| + | $$ | ||
| + | A_n = \frac{2}{L} \int_0^L u_0(x) \sin\left(\frac{n\pi x}{L}\right). | ||
| + | $$ | ||
| + | |||
| + | Imposing the initial velocity, we have | ||
| + | $$ | ||
| + | v_0(x) = \sum_{n=1}^\infty \left(\frac{n\pi c}{L}\right)B_n \sin\left(\frac{n\pi x}{L}\right) | ||
| + | $$ | ||
| + | |||
| + | Again we recognise this as the sine series, so we now need to equate | ||
| + | $$ | ||
| + | \left(\frac{n\pi c}{L}\right)B_n = \frac{2}{L} \int_0^L v_0(x) \sin\left(\frac{n\pi x}{L}\right). | ||
| + | $$ | ||
| + | |||
| + | //(The video gets very close to the end of this; we managed to get the $A_n$ coefficients and need to address the $B_n$ coefficients in lecture 26)// | ||