Trinh @ Bath

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
vpde_lecture20 [2020/03/19 12:41]
trinh
vpde_lecture20 [2020/03/20 19:19] (current)
trinh
Line 1: Line 1:
 ====== MA20223 Lecture 20 ====== ====== MA20223 Lecture 20 ======
 +
 +<html>
 +<iframe width="560" height="315" src="https://www.youtube.com/embed/emwg9UwSn9o" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
 +</html>
  
 ==== Fourier convergence theorem ==== ==== Fourier convergence theorem ====
Line 42: Line 46:
 === Odd- and even extensions of $f(x) = x^2$ ===  === Odd- and even extensions of $f(x) = x^2$ === 
  
-We'll draw the odd and even periodic extension of $f(x)+We'll draw the odd and even periodic extension of $f(x) = x^2$ originally defined on $[0, \pi]$, and then extended in an even or odd manner to $[-\pi, \pi]$. So for example 
 +$$ 
 +f_e(x) = \begin{cases} 
 +x^2 & x\in[0, \pi] \\  
 +x^2 & x\in[-\pi, 0] 
 +\end{cases} 
 +$$ 
 +is the even extension, while  
 +$$ 
 +f_o(x) = \begin{cases} 
 +x^2 & x\in[0, \pi] \\  
 +-x^2 & x\in[-\pi, 0] 
 +\end{cases} 
 +$$ 
 +is the odd extension.
  
-=== Fourier series of $f(x) = e^x===  +Once you have drawn (or derived) the extension, then it becomes a simple matter to calculate the Fourier series. For example, since $f_e(x)$ is an even function then only cosines are present, and  
- +$$ 
-We'll then do two examples. One will be the Fourier series for full $2\pi$-periodic extension of $e^x$ defined on $[02\pi]$. The other will be the even extension of $e^x$ defined on $[0, \pi]$+f_e(x) \sim \frac{a_0}{2} + \sum_{n=1}^\infty a_n \cos(nx),  
 +$
 +where 
 +$
 +a_n = \frac{2}{\pi} \int_0^\pi x^2 \cos(nx) \, \mathrm{d}x. 
 +$$ 
 +Abovewe have used the even property to double up the integral over the positive $xvaluesSimilarly, the Fourier series for the odd extension is  
 +$
 +f_o(x) \sim \sum_{n=1}^\infty b_n \sin(nx),  
 +$$ 
 +where 
 +$$ 
 +b_n = \frac{2}{\pi} \int_0^\pi x^2 \sin(nx) \, \mathrm{d}x. 
 +$$