Trinh @ Bath

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
vpde_lecture20 [2020/03/19 15:50]
trinh [Fourier series for even and odd- extensions]
vpde_lecture20 [2020/03/20 19:19] (current)
trinh
Line 1: Line 1:
 ====== MA20223 Lecture 20 ====== ====== MA20223 Lecture 20 ======
 +
 +<html>
 +<iframe width="560" height="315" src="https://www.youtube.com/embed/emwg9UwSn9o" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
 +</html>
  
 ==== Fourier convergence theorem ==== ==== Fourier convergence theorem ====
Line 57: Line 61:
 $$ $$
 is the odd extension. is the odd extension.
 +
 +Once you have drawn (or derived) the extension, then it becomes a simple matter to calculate the Fourier series. For example, since $f_e(x)$ is an even function then only cosines are present, and 
 +$$
 +f_e(x) \sim \frac{a_0}{2} + \sum_{n=1}^\infty a_n \cos(nx), 
 +$$
 +where
 +$$
 +a_n = \frac{2}{\pi} \int_0^\pi x^2 \cos(nx) \, \mathrm{d}x.
 +$$
 +Above, we have used the even property to double up the integral over the positive $x$ values. Similarly, the Fourier series for the odd extension is 
 +$$
 +f_o(x) \sim \sum_{n=1}^\infty b_n \sin(nx), 
 +$$
 +where
 +$$
 +b_n = \frac{2}{\pi} \int_0^\pi x^2 \sin(nx) \, \mathrm{d}x.
 +$$