Trinh @ Bath

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
vpde_lecture20 [2020/03/19 15:49]
trinh [Fourier series for even and odd- extensions]
vpde_lecture20 [2020/03/19 15:59]
trinh [Fourier series for even and odd- extensions]
Line 42: Line 42:
 === Odd- and even extensions of $f(x) = x^2$ ===  === Odd- and even extensions of $f(x) = x^2$ === 
  
-We'll draw the odd and even periodic extension of $f(x) = x^2$ originally defined on $[0, \pi]$, and then extended in an even or odd manner to $[-\pi, pi]$.+We'll draw the odd and even periodic extension of $f(x) = x^2$ originally defined on $[0, \pi]$, and then extended in an even or odd manner to $[-\pi, \pi]$. So for example 
 +$$ 
 +f_e(x) = \begin{cases} 
 +x^2 & x\in[0, \pi] \\  
 +x^2 & x\in[-\pi, 0] 
 +\end{cases} 
 +$$ 
 +is the even extension, while  
 +$$ 
 +f_o(x) = \begin{cases} 
 +x^2 & x\in[0, \pi] \\  
 +-x^2 & x\in[-\pi, 0] 
 +\end{cases} 
 +$$ 
 +is the odd extension. 
 + 
 +Once you have drawn (or derived) the extension, then it becomes a simple matter to calculate the Fourier series. For example, since $f_e(x)$ is an even function then only cosines are present, and  
 +$$ 
 +f_e(x) \sim \frac{a_0}{2} + \sum_{n=1}^\infty a_n \cos(nx),  
 +$$ 
 +where 
 +$$ 
 +a_n = \frac{2}{\pi} \int_0^\pi x^2 \cos(nx) \, \mathrm{d}x. 
 +$$ 
 +Above, we have used the even property to double up the integral over the positive $x$ values. Similarly, the Fourier series for the odd extension is  
 +$$ 
 +f_o(x) \sim \sum_{n=1}^\infty b_n \sin(nx),  
 +$$ 
 +where 
 +$$ 
 +b_n = \frac{2}{\pi} \int_0^\pi x^2 \sin(nx) \, \mathrm{d}x. 
 +$$