PHILIPPE H. TRINH

DARBY FELLOW IN APPLIED MATHEMATICS

Lincoln College & OCIAM, Mathematical Institute University of Oxford, Oxford UK tel: +44 01865 287375 website: www.ptrinh.com | email: trinh@maths.ox.ac.uk

RESEARCH INTERESTS

Fluid and solid mechanics, perturbation theory and asymptotic analysis, exponential asymptotics, freesurface flows, thin films and elastocapillary flows, wave-structure interactions, hydrodynamic instabilities

RESEARCH SUMMARY

My research is motivated by a range of physical applications in fluid and solid mechanics, from classical hydrodynamics and wave-structure interactions, to thin film flow, elastocapillary systems, and biological models of tissue growth or pattern formation. My primary area of expertise concerns the study of problems that involve a breakdown of traditional techniques in perturbation theory. Many of these problems involve the study of nonlinear differential equations and require the development of specialized methodologies and techniques, such as *exponential asymptotics* or *asymptotics beyond-all-orders*.

ACADEMIC POSITIONS

2012–2017	Darby Fellow in Applied Mathematics University of Oxford Oxford Centre for Industrial and Applied Mathematics Mathematical Institute & Lincoln College
2010-2012	Lecturer & Research Associate Princeton University Program in Applied and Computational Mathematics <i>Collaborators:</i> Profs. Weinan E & Howard A. Stone

EDUCATION

2007-2010	Doctor of Philosophy in Mathematics University of Oxford Oxford Centre for Industrial and Applied Mathematics Mathematical Institute & Balliol College		
	Supervisor: Thesis:	Prof. S. Jonathan Chapman Exponential asymptotics and free-surface flows	
2006-2007	Carleton Univ	ence in Applied Mathematics rersity (Ottawa, Ontario) hematics and Statistics	
	Supervisor: Thesis:	Prof. David E. Amundsen Resonant solutions of Korteweg-de Vries equations	
2004-2006	Carleton Univ	a thematics in Pure Mathematics ersity (Ottawa, Ontario) hematics and Statistics	

RESEARCH VISITS

May to Apr. 2014, 2015	Duke University Department of Mathematics	
	Working with:Prof. Thomas P. WitelskiResearch topics:Formation of finite-time singularities in PDEs, rupture in thin film flows, vortex reconnection, self-similarity	
Jun. to Aug. 2013, 2014	University of British Columbia Mathematics Department	
	Working with: Prof. Michael J. WardResearch topics: Reaction-diffusion equations on curved surfaces, localized spot patterns, differential-algebraic equations	
May 2014	Princeton University Department of Mathematics	
	Working with:Prof. Howard A. Stone & the Complex Fluids GroupResearch topics:Thin film flows on curved surfaces, interfacial instabilities, bubble dynamics (Bretherton problem), contact line problems	

ACADEMIC ACHIEVEMENTS & AWARDS

2010	Oxford University Teaching Excellence Award (MPLS Division)
2010	Tuck Fellowship (1WWWFB/University of Adelaide) Inaugural recipient; award associated with the International Workshop
	on Water Waves and Floating Bodies, and administered by the University of Adelaide and Australian Mathematics Society.
2007-2010	Clarendon Scholarship (University of Oxford)
2007	Commonwealth Scholarship (CSFP)
2007-2010	NSERC Postgraduate Doctoral Scholarship (Canada)
2007	Gary S. Duck Award in Physics, Math, and Photonics
2007	University Senate Medal (Carleton)
2004, 2006	Canadian Governor General's Academic Medal
2006	NSERC Postgraduate Master's Scholarship (Canada)
2006	Graduate Studies and Research Scholarship (Carleton)
2006	Carleton Mathematics Departmental Scholarship (Carleton)
2005, 2006	USRA NSERC Undergrad. Research Award (Carleton)
2005	Helga H. Shirmer Mathematics Award (Carleton)

SUBMITTED OR PRE-PRINT PUBLICATIONS*

- 2016 Crew, S. C. & Trinh, P. H. 2016 New singularities for Stokes waves. J. Fluid Mech. (in review) arxiv.org/abs/1510.04254
- 2016 Trinh, P. H. 2016 A topological study of gravity waves generated by moving bodies using the method of steepest descents. *Proc. Roy. Soc. A* (in review) arxiv.org/abs/1510.06014
- 2016 Trinh, P. H. 2016 On reduced models for gravity waves generated by moving bodies. *J. Fluid Mech.* (in review) arxiv.org/abs/1510.06647
- 2016 Trinh, P. H., Wilson, S. K. & Stone, H. A. 2016 Elastic plates on thin viscous films. *J. Fluid Mech.* (To be submitted) arxiv.org/abs/1410.8558

^{*}All preprints viewable on the arXiv or personal website.

Hammoud, N., Trinh, P. H., Howell, P. D. & Stone, H. A. 2016 The influence of van der Waals forces on a bubble moving in a tube. *Phys. Rev. Fluids* (in review) arxiv.org/abs/ 1601.00726

JOURNAL AND BOOK PUBLICATIONS**

- Trinh, P. H. & Ward, M. J. 2016 The dynamics of localized spot patterns for reaction-diffusion systems on the sphere. *Nonlinearity* 29 (3), 766–806. doi:10.1088/0951-7715/29/3/766
- 2015 Ren, W., Trinh, P. H. & E, W. 2015 On the distinguished limits of the Navier slip model of the moving contact line problem. *J. Fluid Mech.* 772, 107–126. doi:10.1017/jfm.2015.173
- 2015 Trinh, P. H. & Chapman, S. J. 2015 Exponential asymptotics and problems with coalescing singularities. *Nonlinearity* 28 (5), 1229–1256. doi:10.1088/0951-7715/28/5/1229
- Trinh, P. H., Wilson, S. K. & Stone, H. A. 2014 A pinned or free-floating rigid plate on a thin viscous film. *J. Fluid Mech.* 760, 407–430. doi:10.1017/jfm.2014.526
- Trinh, P. H., Kim, H., Hammoud, N., Howell, P. D., Chapman, S. J. & Stone, H. A. 2014
 Curvature suppresses the Rayleigh-Taylor instability. *Phys. Fluids* 26 (5), 051704. doi:10.
 1063/1.4876476
- Trinh, P. H. & Chapman, S. J. 2014 The wake of a two-dimensional ship in the low-speed limit: results for multi-cornered hulls. *J. Fluid Mech.* 741, 492–513. doi:10.1017/jfm.2013.
 589
- 2013 Wexler, J. S., Trinh, P. H., Berthet, H., Quennouz, N., du Roure, Olivia, Huppert, H. E., Linder, A. & Stone, H. A. 2013 Bending of elastic fibres in viscous flows: the influence of confinement. J. Fluid Mech. 720, 517–544. doi:10.1017/jfm.2013.49
- 2013 Chapman, S. J., Trinh, P. H. & Witelski, T. P. 2013 Exponential asymptotics for thin film rupture. *SIAM J. Appl. Math.* 73 (1), 232–253. doi:10.1137/120872012
- ²⁰¹³ Trinh, P. H. & Chapman, S. J. 2013 New gravity-capillary waves at low speeds. Part 1: Linear theory. J. Fluid Mech. 724, 367–391. doi:10.1017/jfm.2013.110
- 2013 Trinh, P. H. & Chapman, S. J. 2013 New gravity-capillary waves at low speeds. Part 2: Nonlinear theory. J. Fluid Mech. 724, 392–424. doi:10.1017/jfm.2013.110
- Trinh, P. H., Chapman, S. J. & Vanden-Broeck, J.-M. 2011 Do waveless ships exist? Results for single-cornered hulls. J. Fluid Mech. 685, 413-439. doi:10.1017/jfm.2011.325
- 2010 Trinh, P. H. 2010 Asymptotic Methods in Fluid Mechanics: Survey and Recent Advances, chap. Exponential Asymptotics and Stokes Line Smoothing for Generalized Solitary Waves, pp. 121–126. SpringerWienNewYork
- Trinh, P. & Amundsen, D. 2010 Unifying steady-state resonant solutions of a broad class of KdV-type equations. J. Comput. Appl. Math. 234 (6), 1788–1795. doi:10.1016/j.cam. 2009.08.029

IN PREPARATION

- Trinh, P. H. & Witelski, T. P. 20— Existence and non-existence of countable sequences of similarity solutions. *(In preparation)*
- Trinh, P. H. & Witelski, T. P. 20- Complex singularities and selection mechanisms in nonlinear differential equations. *(In preparation)*
- Macdonald, C. B., Mäerz, T. & Trinh, P. H. 20– Thin film equations with the Closest Point Method. *(In preparation)*
- Trinh, P. H. & Vella, D. 20- Near threshold buckling analysis of a floating elastic annulus. *(In preparation)*

^{**} Only including refereed journal publications.

For conference proceedings, theses, reports, see personal website

GRADUATE RESEARCH SUPERVISION

2015–Present Helen Fletcher

Doctor of Philosophy (Ph.D.) in Mathematics Industrially Focused Mathematical Modelling Mathematics, University of Oxford

Thesis:Active wave absorption for polychromatic waves* Co-advisor with Prof. S.J. Chapman (Oxford)* Research in collaboration and with partial funding from Coastal and HydraulicsLaboratory, US Army ERDC and HR Wallingford, Ltd.

2013-Present Naima Hammoud

Doctor of Philosophy (Ph.D.) in Mathematics Mathematics, Princeton University

Thesis: Suppression of fluid instabilities in coating flows **Co-advisor with Prof. H.A. Stone (Princeton)*

2014–2015 Amy Guyomard

Master of Science (M.Sc.) in Mathematics Mathematics, University of Oxford

Thesis: The multi-dimensional method of steepest descents

UNDERGRADUATE RESEARCH SUPERVISION

2015–2016	Sean Jamshidi Master of Mathematics (MMath) dissertation Mathematics, University of Oxford		
	Thesis:	Searching for new gravity-capillary waves	
2015–2016		dler Extended Essay (third year) University of Oxford	
	Thesis:	Splash models for flows near the bow of a ship	
Summer 2015	Samuel Crew Undergraduate Research Programme Mathematics, University of Oxford		
	Thesis:	On the singularity of the finite amplitude Stokes wave	
2014–2015	Alexander Gower Master of Mathematics (MMath) dissertation Mathematics, University of Oxford		
	Thesis:	Phase field models and the thin film limit	
2014–2015		itlock hematics (MMath) dissertation University of Oxford	
	Thesis:	Models for thin film flows on curved surfaces	
2014–2015	Jamie Cruickshank Master of Mathematics (MMath) dissertation Mathematics, University of Oxford		
	Thesis:	Tissue growth in a mono-layered epithelium	

2013–2014	Lucy Auton Master of Mathematics (MMath) dissertation Mathematics, University of Oxford		
	Thesis:	Multiple scales for discrete difference equations	
2013–2014		for thematics (MMath) dissertation University of Oxford	
	Thesis:	Discrete and continuum models for in vitro tissue growth	
2013–2014	Melissa Varney Master of Mathematics (MMath) dissertation Mathematics, University of Oxford		
	Thesis:	Mathematical models for the wrinkling of thin sheets	
2013–2014		v oi Teramoto Applied and Computational Mathematics of Mathematics, Princeton University	
		Stability of patterns in reaction-diffusion equations <i>iect in SLAM 2013 contest for Teaching Dynamical Systems</i> ACM Independent Project Prize	
2011-2012	0	n ber g e Senior Thesis Princeton University	
	Thesis: * Awarded a de	Topics in Real Analysis epartmental distinction for thesis	
2011-2012	Daniel Wu Undergraduate Research Project Mathematics, Princeton University		
	Thesis:	Functional analysis and its applications to potential theory	

funding & grants

2016 Oxford Mathematics Summer Research Bursary

A grant for £2500 to Thomas Chandler (MMath) in order to undertake a summer research project on the study of splash models for breaking water waves. *Approved to begin Summer* 2016

2015 EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling

Joint principal investigator for a Ph.D. project to develop mathematical models to predict boundary and internal processes for a high resolution computational wave flume. Joint funding from the EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling (InFoMM) and the US Army Corps of Engineers (USACE). *Approved to begin 2016*.

2014 Zilkha Fund (Lincoln College, Oxford)

A grant for £2000 awarded by the Trustees of the Zilkha fund to cover a research trip to the University of British Columbia to study the formation of localized spots in reaction diffusion equations on surfaces with Prof. Michael Ward.

TEACHING AWARDS

2010 University of Oxford Teaching Excellence Award

Through student and faculty nominations, I was recognized by the Mathematical, Physical, and Life Sciences Division (MPLS) for my commitment to teaching and innovative approaches in the classroom.

TEACHING EXPERIENCE

2011-2012 Lecturer and Course Coordinator

*MAT*₃₅₀ Introduction to Differential Equations (3rd year, Mathematics) Mathematics Department, Princeton University

Responsibilities: managing a teaching assistant, designing and delivering the course lectures, writing course notes and assignments, and creating midterm and final examinations.

Various Departmental & College Tutor

University of Oxford, Princeton University, Carleton University

I have taught all the classes below either as a departmental tutor (managing teaching assistants, directing and teaching classes of 15-30 students), or as a college tutor (in the Oxford tutorial system; a more supervisory role involving tutorial teaching). Many of these roles have given me the opportunity to develop further additional course material (for tutorials, examination preparation, etc.).

Multiple integrals and vector calculus • Oxford (Physics, yr. 1)
--

Research \mathfrak{S} administrative management

2014 OCIAM Industrial and Interdisciplinary Workshops

In 2014, I was involved with coordinating and managing the industrial workshops. The role required collaborating with Oxford faculty in organizing speakers (chosen from industry or other departments), hosting visitors during the workshops, and serving as a bridge between the industrial and academic communities.

2012-Present Member of Governing Body at Lincoln College

I serve as an active member of Lincoln College's Governing Body, which provides me with the opportunity to participate in many aspects of the college management. In particular, I have acted as an interviewer for several staff and lecturer positions, in addition to the typical responsibilities of interviewing undergraduate candidates within Oxford's collegiate scheme.

2013-Present Fellow for Schools Liaison at Lincoln College

My role as the Fellow for Schools Liaison involves traveling to schools in Lincolnshire and the surrounding area for outreach efforts on behalf of the college. These events give me an opportunity to discuss Oxford applications, the interview process, academic and undergraduate life with younger school students. The role also involves acting as a host during open days or special events within Oxford.

2011-2012 Princeton University ALTA faculty advisory board

I was nominated to serve as a member of the faculty advisory board for the ALTA (Academic Life Total Assessment) project organized by the Princeton Undergraduate Student Government. The goal of the project is to provide a detailed assessment of undergraduate life and suggest ways of improving the student learning experience.

A SELECTION OF TALKS

"Beyond all orders: the role of exponentially small effects in the physical sciences"

On: The emergence of techniques in exponential asymptotics from the historical resolution of several long-standing problems; a survey of current research with focus on applications to thin film rupture and hydrodynamics.

- 2015 Applied and Computational Mathematics Seminar, Edinburgh University (UK)
- 2015 Center for Nonlinear and Complex Systems Seminar, Duke University (USA)
- Fluid Dynamics Seminar, Imperial College London (UK)

"On Tulin's paradox: an exact theory of gravity wave generation by moving bodies"

On: The resolution of long-standing questions posed by M.P. Tulin in regards to developing an exact theory of wave-structure interactions; a proposal of a new steepest descent methodology.

2015	International Conference on Nonlinear Evolution Equations
	and Wave Phenomena (IMACS), University of Georgia (USA)
2015	International Applied and Computational Complex Analysis workshop
	Imperial College London (UK)

"Have you seen our water waves? Theoretical predictions of new gravity-capillary waves at low speeds"

On: Exponential asymptotics has allowed for the theoretical prediction of new classes of gravity-capillary waves, induced by flows over nonlinear geometries.

- Applied Mathematics Seminar, University College London (UK)
- 2013 Applied Mathematics Seminar, University of Delaware (USA)
- 2011 Program in Applied and Computational Mathematics (PACM) Colloquium, Princeton University (USA)

"Thin film flows on curved surfaces"

On: On the importance and theory of thin film dynamics on general curved surfaces, and the suppression of the Rayleigh-Taylor instability through substrate curvature.

- 2013 Oxford-Princeton Collaborative Workshop, Princeton University (USA)
- Annual Meeting of the APS Division of Fluid Dynamics (San Diego, USA)

"The contact lens problem and thin film flows with elastic structures"

On: Studying the role of competing effects of surface tension, viscosity, and substrate rigidity on thin film free-surface interactions with a rigid or elastic plate.

- 2015 Fluids & Elasticity 2015, Biarritz (France)
- 2013 Applied Mathematics Seminar, University of Delaware (USA)

REFERENCES

Prof. S. Jonathan Chapman

Mathematical Institute University of Oxford (Oxford, UK) chapman@maths.ox.ac.uk

Prof. Howard A. Stone

Department of Mechanical & Aerospace Engineering Princeton University (*Princeton*, USA) hastone@princeton.edu

Dr. Dominic Vella

Mathematical Institute University of Oxford (Oxford, UK) vella@maths.ox.ac.uk

Prof. Michael J. Ward

Department of Mathematics University of British Columbia (Vancouver, Canada) ward@math.ubc.ca

Prof. Stephen K. Wilson

Department of Mathematics and Statistics University of Strathclyde *(Glasgow, UK)* s.k.wilson@strath.ac.uk

Prof. Thomas P. Witelski Department of Mathematics Duke University (Durham, USA) witelski@math.duke.edu