
Seeing the unseen
As the solution passes
through the critical value,  
the inferior term enters   
as it were into a mist..
 
  - G.G Stokes

Using exponential asymptotics to reveal hidden water waves

        T FIRST, NOBODY SEEMED TO NOTICE. 
Consider a two-dimensional ideal �uid �owing past or over an obstruction in the stream. 
Previous investigators had represented the free-surface as an asymptotic expansion,

supposedly valid in the limit the Froude number, or alternatively, the speed of the stream 
tends to zero. But it wasn’t until 1968 when naval architect T.F. Ogilvie pointed out the 
peculiarities of these solutions: First, the approximations predict a waveless free-surface. 
But even if the speed of the stream is small, one would still expect waves to form 
downstream – where are the waves? Second, the asymptotic expansion in (1) seems to 
‘re-order’ as the Froude number tends to zero, with lower and lower speeds requiring more 
and more terms to achieve desired accuracy. But the approximation should be getting 
better as limit is approached – not worse!  Today, however, Ogilvie’s observations are easily 
identi�ed as necessary consequences of representing well-de�ned phenomena using 
ill-de�ned and divergent asymptotic expansions. 

Come, let us seek these dastardly waves. 

A

Examine the ship to the upper-right, where our four intrepid 
heros are perched. �e key observation is that at low speeds, the 
asymptotic approxima-
tion of the free-surface  
contains a singularity at 
the corner of the stern. 
�is use of ill-de�ned 
approximations in order 
to represent perfectly 
well-de�ned phenomena is one of the caveats of asymptotics, but 
one would hope that a singularity far from the region of interest 
(the free surface) has little e�ect on the approximation.
        �is is not the case. Because the calculation of each additional 
term in the series depends on the derivatives of the previous terms, 
the situation gets a whole lot worse. In fact, in the limit that n 
tends to in�nity, the asymptotic expansion will diverge (Figure 2).

a problem of singularities

However, the divergence of the asymptotic series obeys 
a beautiful universality. In the 1950s, R.B. Dingle 
showed that the late terms of nearly all divergent series 
are of the form 
factorial/power. �us, 
we see in (2) that the 
unsettling growth of 
the factorial is expounded by the fact that the power of 
the singularity grows at each subsequent order. If we 
plot the error in the approximation as a function of the 
number of terms taken (Figure 3), the error decreases 
to a minimum (at the optimal truncation point), then 
grows to in�nity. �ese facts about asymptotic 
divergence apply to a wide class of problems.

Asymptotic divergence

Ultimately, what is the price we pay for divergence? In the late 19th 
century, the mathematical physicist G.G. Stokes studied an 
approximation which exhibited 
waves in one region of space, but 
none in the other. He described the 
waves as seeming to “emerge from a 
mist”. �is “mist” Stokes refers to is a 
mathematical aberration caused by the underlying divergence of the 
asymptotic series. It can be shown that there exists curves, or Stokes 
lines, which originate from the singularities of the �ow �eld and arc 
towards the free-surface. Across these lines, a small exponential term 
switches on. �us, by plotting the Stokes lines and the numerical 
solutions for various �ows (Figure 4), we can see that waves appear 
approximately where the Stokes line intersects the free-surface.

The stokes phenomenon

In order to retrieve the small waves that are �icked 
on as the Stokes line is crossed, we proceed as 
follows: We truncate the asymptotic expansion at the 
optimal truncation point (3); here the error in the 
approximation is exponentially small – the very best 
we can do with traditional asymptotics. We then 
re-scale near the singularity (Figure 5) and study the 
jump in the remainder as the Stokes line is crossed. 
�e surface waves are then given by a formula that 
relates the small waves with the late-order terms of the asymptotic expansion (4).
      
�us, techniques in exponential asymptotics allow us to extract information from the 
divergent tails of the asymptotic expansion. �e theory is elegant and explains the nature 
of the hidden waves by recourse to key singularities in the �ow �eld. Moreover, compari-
sons with numerical simulations have yielded excellent agreement.

beyond all orders and stokes smoothing
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Figure 1: free-surface flow over a step. Why are 
there no waves in the asymptotic approximation?
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Figure 3: as more terms are included in the 
asymptotic expansion, the error decreases 
to the optimal truncation point (where it is 
exponentially small), then diverges.
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Figure 2: the late terms are 
entirely dominated by the 
factorial over power behaviour 
at the corner singularity.
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Figure 4: stokes lines (here 
exaggerated in size) originate from 
strong singularities in the flow field. 
When the solution crosses the Stokes 
line, a small exponential switches on.
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Figure 5: after optimally truncating the series and 
re-scaling near the singularity, the hidden wave 
appears as the stokes line is crossed (above). This 
smooth switching-on of the exponentially small 
remainder is in the form of an error function (left).
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