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Abstract
In the singularly perturbed limit corresponding to a large diffusivity ratio 
between two components in a reaction-diffusion (RD) system, quasi-
equilibrium spot patterns are often admitted, producing a solution that 
concentrates at a discrete set of points in the domain. In this paper, we derive 
and study the differential algebraic equation  (DAE) that characterizes the  
slow dynamics for such spot patterns for the Brusselator RD model on  
the surface of a sphere. Asymptotic and numerical solutions are presented 
for the system governing the spot strengths, and we describe the complex 
bifurcation structure and demonstrate the occurrence of imperfection 
sensitivity due to higher order effects. Localized spot patterns can undergo a 
fast time instability and we derive the conditions for this phenomena, which 
depend on the spatial configuration of the spots and the parameters in the 
system. In the absence of these instabilities, our numerical solutions of the 
DAE system for N  =  2 to N  =  8 spots suggest a large basin of attraction to a 
small set of possible steady-state configurations. We discuss the connections 
between our results and the study of point vortices on the sphere, as well as 
the problem of determining a set of elliptic Fekete points, which correspond 
to globally minimizing the discrete logarithmic energy for N points on the 
sphere.
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1.  Introduction

We analyze localized spot patterns for a two-component reaction-diffusion (RD) system on 
the surface of a sphere. In the singularly perturbed limit that corresponds to the large diffu-
sivity ratio, such systems will often permit the formation of spatially localized spot patterns, 
These patterns are characterized by one or both solution components concentrating at certain 
points in the domain. At leading-order, the spot patterns are stationary, and in a companion 
paper by Rozada et al [32], results for these quasi-equilibria structures were presented for the 
prototypical model of the Brusselator. Over long time scales, however, and for finite diffusiv-
ity ratios, the spots will indeed move on the sphere. The main goal of this paper is to derive 
and analyze these resultant slow spot dynamics.

We focus our analysis on the dimensionless Brusselator system given in terms of the acti-
vator xu u t,( )=  and the inhibitor xv v t,( )=  on the surface of the unit sphere, formulated as

u

t
u F u v

v

t
v H u v, , , ,S S

2 ( ) ( )ε τ
∂
∂
= ∆ +

∂
∂
= ∆ +� (1a)

where the nonlinear kinetics are defined by

( ) ( ) ( )ε ε≡ − + ≡ −−F u v u fu v H u v u u v, E , , ,2 2 2 2� (1b)

for constants E 0> , 0τ>  and 0  <  f  <  1. The parameter 0ε>  corresponds to the diffusivity 
ratio between the two components. In (1a), the surface Laplacian, S∆ , is defined by
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∂
∂
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corresponding to the spherical coordinate system x x y z, , cos sin , sin sin , cos T( ) ( )φ θ φ θ θ= = , 
for longitudinal angular coordinate [ )φ π∈ 0, 2  and latitudinal coordinate 0,( )θ π∈ . The part
icular scaling of the non-dimensionalized system (1) has been primarily chosen so that the 
magnitude of the spot patterns for u is 1( )O  in the limit 0→ε . In appendix A, we review the 
full details of the scalings leading to (1), as given in [32].

For small values of ε, localized spot patterns are readily observed in full numerical simula-
tions of (1) when using random initial conditions close to the spatially homogeneous state, 
u fE/ 1e

2 ( )ε= −  and v f1 / Ee
2( ) ( )ε= − . For example, using one set of parameter values and 

with a 1% random perturbation of the homogeneous state, figure 1 shows that the intricate 
transient dynamics at short times leads to the formation of six localized spots as time increases. 
Thus, given that spot-type patterns can emerge in the singularly perturbed limit, 0→ε , it is of 
interest to asymptotically construct such patterns and then to analyze their stability and slow 
dynamics. A central question is to ask whether, beginning from an N-spot pattern, one can 
asymptotically derive from (1) a reduced dynamical system for the time evolution of the spot 
centers. From this limiting system, one can then determine the spatial locations of the centers 
of the spots that correspond to linearly stable steady-state patterns on the sphere.

1.1.  Extending from the quasi-equilibrium study of Rozada et al [32]

Our understanding of the quasi-static spot patterns on the sphere relies upon many results 
presented in the companion paper by Rozada et al [32]. There, the method of matched asymp-
totic expansions was used in the limit 0→ε  to construct the quasi-static N-spot solution for 
(1), with the spots centered at x x, , N1 …  on the sphere. In the outer region, defined at 1( )O  
distances from the spot locations, it was shown that the leading-order inhibitor concentration 
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field, v, in (1) is given in terms of a sum of Green’s functions, where each spot is represented 
as a Coulomb singularity of the form x xv S logj j∼ | − | as x xj→ , for j N1, ,= … . The spot 
strengths S S, , N1 …  were found to satisfy a nonlinear algebraic system involving a Green’s 
matrix, representing interactions between the spots, and a nonlinear function arising from the 
local solution near an individual spot. An important parameter, which arises from the logarith-
mic singularity of the Green’s function on the sphere, is

ν
ε

=
| |

1

log
.� (3)

This gauge parameter arises during the matching process between the outer solutions, valid 
away from the spot centers, and the inner core solutions.

Moreover, in the companion study [32], it was shown that from a numerical solution of a 
radially symmetric eigenvalue problem that if the spot strength exceeds some threshold, then 
the j th spot is linearly unstable to a non-radially symmetric peanut-shape perturbation near 
the spot. This linear instability was found to be the trigger of a nonlinear spot self-replication 
event, suggesting that this bifurcation is subcritical. In addition, a globally coupled eigenvalue 
problem (GCEP) was formulated that determines the stability properties of an N-spot pattern 
to locally radially symmetric perturbations near the spots. This GCEP was analyzed in [32] 
only for special spatial configurations x x, , N1{ }…  of spots for which they have a common 
strength, i.e. S Sc j=  for j N1, ,= … .

Figure 1.  Full numerical solutions u in (a)–(e), and v in (f) to ( j) of the RD system 
(1) computed using the closest-point method used in [32] with explicit Euler time 
integration. The parameter values are f  =  0.8, ε = 0.075, τ = 7.8125, =E 4. Time 
steps were ∆ =t 0.005 and ∆ = ∆ =x y 0.08. Blue denotes small values, yellow middle 
values, and red large values. The top subplots display the patterns in the ( )φ θ,  plane.
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In this paper, we shall build upon the companion study [32] by presenting an asymptotic 
and numerical study of the slow spot patterns. We will also provide a more complete analysis 
of the quasi-equilibria patterns, particularly noting further distinguished limits as 0→ε , and 
solutions with unequal spot strengths, which had not been previously uncovered in [32].

Our plan is as follows. In section 2 we first present our main results for the slow dynamics 
of a collection of localized spots for (1) on the surface of the unit sphere. In section 3 we shall 
derive the set of equations that governs the slow movement of the spot locations. We demon-
strate that in the absence of any 1( )O  time-scale instability, the spots centers will slowly drift 
on an asymptotically long time-scale of order 2( )ε−O . The governing equations take the form 
of differential algebraic equation (DAE) for the time-evolution of the spot locations, which 
depend on the current spot strengths. The main technical challenge in deriving this DAE is due 
to the higher-order matching between the inner (near-spot) and outer solutions. In particular, 
this asymptotic matching must account for inter-spot interactions, the slow dynamics of the 
patterns, and the correction terms that arise due to the projection the spherical geometry onto 
the local tangent plane approximation near the j th spot.

In section 4 we shall return to the study of the quasi-equilibrium solutions and provide a 
new analysis that accounts for the distinguished limits that arise when E in (1) is either 1( )O  
or simultaneously tends to zero when 0→ν . We identify a set of patterns of quasi-equilibrium 
patterns, not remarked in [32], that consists of spots of mixed strengths, and we demonstrate 
that such mixed patterns are all unstable on an 1( )O  time-scale. We furthermore extend the prior 
study by applying numerical path-following methods to the nonlinear algebraic system in order 
to illustrate the bifurcation structure. Notably, we demonstrate the new result that, in the regime 

( )ν= OE , the transcritical bifurcation structure associated with the leading-order theory can 
be destroyed when higher order terms in ν are included. We show that this imperfection sensi-
tivity of the transcritical bifurcation structure occurs when a certain cyclicity condition on the 
Green’s matrix associated with the spatial configuration of the spots is not satisfied. In rather 
general settings it is well-known that transcritical bifurcations are not structurally stable, and so 
can possibly exhibit similar imperfection sensitivity behavior to small perturbations.

In section 5, we perform numerical simulations of the DAE system in the parameter regime 
for which the quasi-equilibrium spot patterns are linearly stable. By beginning from random 
initial configurations for N  =  2 to N  =  8 spots, we identify the steady-state patterns having 
large basins of attraction. A particularly difficult configuration to identify is for N  =  8, where 
the stable steady-state pattern is a 45° ‘twisted cuboid’: two parallel rings containing four 
equally-spaced spots, with the spots phase shifted by 45° between each ring (see figure 10). In 
fact, this special 8-spot pattern is an elliptic Fekete point set. Our main results are summarized 
in section 6, where we discuss open problems for future study.

1.2.  Connections and differences with other works

There is a wealth of literature on the formation of RD patterns in both simple and more com-
plicated domains, motivated by the original study of Turing in [36] who showed how stable 
spatially complex patterns can develop from small perturbations of spatially homogeneous 
initial data for a coupled two-component RD system. Let us review how the work in this paper 
fits into the wider community.

It is now well-known that when the diffusivity of one of the reaction components in an RD 
system is asymptotically small compared to the length-scale of the domain, stable spatially 
localized spot patterns can emerge from initial data. For this situation where only one of the 
two solution components is localized, the spots are said to exhibit semi-strong interactions. In 
this semi-strong interaction limit, and in a 1D spatial domain, there have been many studies of 
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the dynamics of localized patterns for specific RD systems; this includes the Gierer–Meinhardt 
(GM) model [12, 14, 34], the Gray-Scott (GS) model [7, 10, 11, 34], the Schnakenberg model 
[31], a three-component RD system modeling gas-discharge [38], the Brusselator model [37], 
a model for hot-spots of urban crime [35], and a general class of RD models [24]. In these 
studies, a wealth of different analytical techniques have been used, including the method of 
matched asymptotic expansions, Lyapanov–Schmidt reductions, geometric singular perturba-
tion theory, and the rigorous renormalization group approach of [12]. In contrast, for the case 
of a 2D domain, there are only a few studies of the dynamics of localized spot patterns by 
formal asymptotic analysis (see e.g. [6, 16, 17]), as the analytical techniques available in 2D 
are, to a large extent, very different in nature to those for the simpler 1D case.

There have been many numerical studies of RD patterns on the sphere and other compact 
manifolds (see [1, 5, 13, 19, 20, 23, 39]), many of which are motivated by specific problems in 
biological pattern formation for both stationary and time-evolving surfaces (see [18, 27, 29]).  
Most prior analytical studies of pattern formation on surfaces have been restricted to the sphere, 
and focus on analyzing the development of small amplitude spatial patterns that bifurcate from 
a spatially homogeneous steady-state at some critical parameter value. Near this bifurcation 
point, weakly nonlinear theory based on equivariant bifurcation theory and detailed group-
theoretic properties of the spherical harmonics have been used to derive and analyze normal 
form amplitude equations characterizing the emergence of these small amplitude patterns (see 
[4, 8, 21, 22, 28, 39]). However, due to the typical high degree of degeneracy of the eigenspace 
associated with spherical harmonics of large mode number, these normal form amplitude equa-
tions typically consist of a large coupled set of nonlinear ODEs. These ODEs have an intricate 
subcritical bifurcation structure, with weakly nonlinear patterns typically only becoming stable 
past a saddle-node bifurcation point. As a result, the preferred spatial pattern that emerges from 
an interaction of these modes is difficult to predict theoretically. Moreover, although equivari-
ant bifurcation theory is able to readily predict the general form of the coupled set of amplitude 
equations, the problem of calculating the coefficients in these amplitude equations for specific 
RD systems is rather intricate in general (see [4] for the case of the Brusselator).

In this paper and its companion [32], we propose an alternative theoretical framework for 
analyzing RD patterns on the sphere. In contrast to a weakly nonlinear framework, our theor
etical analysis is not based on an asymptotic closeness of parameters to a Turing bifurcation 
point. Instead, it relies on an assumed large diffusivity ratio between the two components 
in the system. In this singularly perturbed limit, the Brusselator allows for the existence of 
localized quasi-equilibrium spot-type patterns for a wide range of parameters. Related work 
on characterizing slow spot dynamics in a 2D planar domain was done previously for the 
Schnakenberg model [16] and the Gray-Scott model [6]. Our analysis of slow spot dynamics 
on the sphere is rather more complicated than that for the planar case since we must carefully 
examine certain correction terms generated by the curvature of the sphere.

We also note that an important motivation for this paper is to better understand the con-
nections that exists between the study of spot patterns on the sphere in RD systems, with the 
apparently similar study of point vortex motion on the sphere in Eulerian fluid mechanics. 
For the latter problem, the positions of the point vortices are similarly governed by a reduced 
dynamical system. This system has been under intense study over the past three decades (see 
[2, 3, 15, 25, 26] and the references therein).

2. Two principal results for slow spot dynamics

In this section, we present our main results for the slow dynamics of a collection of localized 
spots for (1) on the surface of the unit sphere. The first result, as originally derived in [32], is 
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an asymptotic result characterizing quasi-equilibrium solutions of (1) when 1ε� . The result 
is as follows:

Principal Result 1 (Quasi-Equilibria, (2.15) in [33]).  For 0→ε , the leading order uni-
formly valid quasi-equilibrium solution to (1) is described by an outer solution, valid away 
from the spots, and inner core solutions near each of the N spots centered at x xj=  for 
j N1, ,= … . These solutions are

x x
xu U v S L R vE , 4 E ,

i

N

i
i

i

N

i iunif
2

1
,0 unif

1

( )
⎛
⎝
⎜

⎞
⎠
⎟∑ ∑ε

ε
π∼ +

| − |
∼ − +

= =
� (4)

where x x xL logi i( )≡ | − |, R log 4 11

4
( )≡ −
π

, and v is a constant. The leading-order radially 

symmetric inner core solution, Ui, 0, is defined on the tangent plane to the sphere near the spot 
at x xi= , and is found by numerical computation of the BVP (18). In (4), the spot strengths, 
Si for i N1, ,= … , satisfy the nonlinear algebraic system

S S S e
N

I I I 0
2E

.0 0( ) [ ( ) ] ( ) ( )χν ν≡ − − + − − =N E G E� (5)

Here I is N N×  identity matrix, ij N0
1( ) =E , S Si i( ) = , S Si i( ( )) ( )χ χ= , xLij i j( ) ( )G =  for i j≠  

and ( )G = 0ii , e 1i( ) = , and 1/logν ε= − . The values of Si( )χ  are found by numerically solving 
the leading-order inner system (18) (see figure 13). In terms of the spot strengths, the constant 
v in (4) is

e e Sv
N

R
N

2E
4 E

1
.T T[ ]χ

ν
π= + + − G� (6)

For a fixed configuration of spot locations, the linear stability of such quasi-equilibrium 
solutions to 1( )O  time-scale instabilities was investigated in [32]. There, it was found that, 
depending on the range of E, τ, and f, such instabilities can lead to either spot self-replication 
events, a spot-annihilation phenomena, or temporal oscillations of a spot profile. These insta-
bilities are discussed in detail in section 4. For E 1( )= O , our analysis in section 4 shows that, 
to leading order in ν, spot-patterns for which S 1j ( )= O , for all j N1, ,= … , are linearly stable 
on an 1( )O  time-scale provided that S fj 2( )<Σ  for all j N1, ,= … , where 2Σ  is referred to as 
the spot self-replication threshold.

However, in those parameter range where these 1( )O  time-scale instabilities are absent, the 
main result of this paper is to show that the quasi-equilibrium solution of (4) characterizes the 
slow dynamics of a localized spot pattern for (1) on the longer time scales of 2( )ε−O . On this 
long time-scale, the slow dynamics of the centers of a collection of N spots is characterized 
as follows:

Principal Result 2 (Slow spot dynamics).  Let 0→ε . Provided that there are no 1( )O  time-
scale instabilities of the quasi-equilibrium spot pattern, the time-dependent spot locations, 
x cos sin , sin sin , cosj j j j j j

T( )φ θ φ θ θ= , vary on the slow time-scale t2σ ε= , and satisfy the 
differential algebraic system (DAE):

x x j N
d

d

2
, sin

d

d

2
, 1, , ,

j

j
j j

j

j
j1 2( ) ( )

θ
σ

α θ
φ

σ
α= − = − = …

A A
� (7a)
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where S f;j j( )=A A  is a nonlinear function of Sj defined via an integral in (41) (see figure 2), 
and
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The spot strengths Sj, for j N1, ,= … , are coupled to the slow dynamics by (5).

It is convenient to express the slow dynamics of the spot locations in a more explicit form. 
To do so, we use the cosine law x x 2 1 cosi i

2 ( )γ| − | = −  to write Li in terms of spherical 
coordinates as

L
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2
log 1 cos

1

2
log 2, cos cos cos sin sin cos ,i i i i i i[ ] ( )γ γ θ θ θ θ φ φ= − + = + −

where ,i i( )γ γ φ θ=  is the angle between x and xi. By using this form for Li, (7) becomes
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for j N1, ,= … , where ,ij i j j( )γ γ φ θ≡  is the angle between xi and xj.
As an alternative to (8), we can also write (7) in terms of cartesian coordinates. Writing 

xj as a column vector, and letting T denote transpose, we will show in section 3 that (8) is 
equivalent to

Figure 2.  Left: Aj versus Sj for f  =  0.3. Right: Aj versus Sj for f  =  0.4, f  =  0.5, f  =  0.6, 
and f  =  0.7, as shown. The thin vertical lines in these figures is the spot self-replication 
threshold ( )= ΣS fj 2  (see (44)). For ( )>ΣS fj 2 , the quasi-equilibrium spot solution is 
linearly unstable on an ( )O 1  time-scale. On the range ( )< <ΣS f0 j 2  we observe that 
<A 0j . In this figure, the values of f increase in the direction of the arrow. 
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3.  Asymptotic derivation of the slow spot dynamics

Our aim in this section is to construct a localized quasi-equilibrium spot pattern solution for 
the system (1) in the limit 0→ε . Such solutions consist of two parts. The first consists of an 
outer region, where the solution varies slowly according to

u v H u vE and , E.Sout
2

out
2

out out( )ε ε∼ ∆ ∼− ∼−−� (10)

The second part of the solution consists of localized inner regions of spatial extent ( )εO  
near each of the spots centered at x xj= , where x cos sin , sin sin , cosj j j j j j

T( )φ θ φ θ θ= , for 
j N1,= … .

3.1.  Plan of action

The asymptotic analysis presented below is necessarily detailed and technical, so let us first 
outline the three main steps of the procedure.

(Step 1) We first apply a dominant balance argument and argue that the centers of the spots 
will move slowly on a time scale σ defined by t2σ ε= , so that x xj j( )σ= . In the inner region 
near the j th spot we introduce the local coordinates s s s, T

1 2( )=  defined by

s s t, sin , .j j j1
1

2
1 2[ ( )] [ ( )]ε θ θ σ ε θ φ φ σ σ ε≡ − ≡ − =− −� (11)

	
By re-scaling into the inner region, we develop the zeroth (leading) and first-order equa-
tions for the two inner solutions, su U ,jin ( )σ=  and sv V ,jin ( )σ=  near the j th spot. The lead-
ing-order inner problem is precisely the same as in [32]. The first correction, however, is new, 
and is necessary in order to establish the dynamics.

(Step 2) We return to the outer region and develop a uniformly-valid outer solution which 
includes the logarithmic behaviour near the inner region (expressed as a sum of Green’s func-
tions) and the unknown source strengths, Sj. Matching the inner and outer solutions at leading-
order gives principal result 1, i.e. a nonlinear algebraic equation for Sj for a known set of xj. 
Both Steps 1 and 2 are nearly the same as in [32]. The only difference is that the matching 
procedure of Step 2 requires derivation of higher-order terms that are used later.

(Step 3) The derivation of the governing equation for the spot locations now follows from 
matching the inner and outer solutions at first order, and applying a solvability condition. A 
key difficulty that confronts us in this step is that the higher-order matching between inner and 
outer solutions requires not only matching the inter-spot interactions and slow dynamics of 
the patterns, but also the corrections that arise due to the projection of the spherical geometry 
onto the local tangent plane approximation.

Before proceeding with these three steps, we first establish the following lemma that 
explains how the outer coordinate, x, can be re-written in terms of the inner coordinate, s. The 
proof is presented in appendix C.1.
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Lemma 1 (Tangent plane transformation).  Suppose that 0,j ( )θ π∈ . Then, for ( )ε| − | = Ox xj   
and ( )O| | =s 1 , we have

( ) ( )Oε ε ερ
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θ ρ− = + | − | ∼ + ≡ +x x J s x x s s s s,
2

cot , ,j j j j
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1 2( )≡  and Jj is the 3 2×  matrix defined by
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T j j j j j

j j

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

φ θ φ θ θ

φ φ
≡

−

−� (12b)

3.2.  (Step 1) Governing equations near the spots

We begin by re-scaling the governing equations near the j th spot and proceed to develop the 
first two orders. First, we write su U ,jin ( )σ=  and sv V ,jin ( )σ= , and expand

s sU U V V, , , .j
n

n
jn j

n

n
jn

0 0

( ) ( )∑ ∑σ ε σ ε= =
=

∞

=

∞

� (13)

In addition, upon introducing (11) into (2) and the time derivative, we obtain for 1ε�  that

t

1 1
1 , ,S s s2 , 1 1

2
1 2 ( )( ) N T

ε ε
ε ε

σ
∆ = ∆ + +

∂
∂
= +

∂
∂

O� (14a)

where we have defined the additional operators,

s s s s
, , ,s s s s,

1 2
,

2

1
2

2

2
21 2 1 2( ) ( )

⎛
⎝
⎜

⎞
⎠
⎟∇ ≡

∂
∂

∂
∂

∆ ≡
∂
∂
+
∂
∂

� (14b)

s
s

s
cot 2 , ˙ , ˙ sin .j j j j s s1

1
1

2

2
2 1 ,1 2( ) ( )N T

⎛

⎝
⎜

⎞

⎠
⎟θ θ φ θ≡

∂
∂
−

∂
∂

≡− ⋅ ∇� (14c)

Here the overdot indicates derivatives with respect to σ, We substitute (13) and (14) into (1), 
and equate powers of ε to obtain inner problems near x xj= . To leading order, on s 2∈R  we 
obtain the same set of equations as presented in [32] (see their (2.1)):

U U f U V 0,s s j j j j, 0 0 0
2

01 2( )∆ − + =� (15a)

V U U V 0.s s j j j j, 0 0 0
2

01 2( )∆ + − =� (15b)

At next order, and labelling U U V,j j j
T

1 1 1( )≡  and U U V,j j j
T

0 0 0( )≡ , we find on s 2∈R  that

( )L N
T

M M≡∆ + = − + ≡
− +

− −

⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟U U U U

U f U V f U

U V U0
,

1 2

1 2
.j s s j j j j

j
j

j j j

j j j

1 , 1 1 1 0
1 0 0 0 0

2

0 0 0
21 2

�

(16)

Indeed, it is the above set of equations that will be used to establish the dynamics of the spots.
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3.3.  (Step 2) The leading-order inner problem and initial matching

We now move on to solve the leading-order inner problem (15) and perform the leading-order 
matching between inner and outer solutions. This procedure will lead to principal result 1.

First, we seek a radially symmetric solution to (15) with matching conditions,

U V S0 and log as ,j j j0 0→   →ρ ρ∼ ∞� (17)

where s s1
2

2
2 1/2( )ρ≡ +  is the distance from the spot along the tangent plane, and Sj, referred to 

as the spot strength, is a parameter to be determined (see [32]). Note that since uout
2( )ε= O  in 

the outer region, the far-field behavior of Uj0 matches with the outer solution.
As such, in (15) we set U Uj j0 0( )ρ=  and V Vj j0 0( )ρ= . In terms of ρ∆ ≡∂ + ∂ρ ρρ ρ

−1 , (15) 
reduces to the following BVP system on 0 ρ< <∞:

U U fU V V U U V0, 0,j j j j j j j j0 0 0
2

0 0 0 0
2

0∆ − + = ∆ + − =ρ ρ� (18a)

U V U V S o0 0 0, 0, log 1 as .j j j j j0 0 0 0( ) ( ) → ( )   →ρ χ ρ= = ∼ + + ∞′ ′� (18b)

In general, the solution of the this problem (18) must be computed numerically, and we have 
included in appendix B additional details and figures for such computations. In particular, the 
far-field constant S f;j( )χ χ= , which is needed for the slow dynamics, must be computed 
numerically. As shown below in (25), this constant S f;j( )χ  will play an important role in 
matching the core solution to the outer solution for v. Upon integrating (18a) for Vj0, we obtain 

the identity S U V U dj j j j0 0
2

0 0( )∫ ρ ρ= −
∞

.
Next, we relate the outer solution for v, valid away from the spots, to the inner solution Vj0. 

We first use the leading-order uniformly valid solution for u, given by u UE i
N

iunif
2

1 0ε∼ +∑ = , 
to calculate H(u, v), defined in (1), in the sense of distributions as

x xu u v U U V SE 2 d E 2 .
i

N

i i i
i

N

i i
2 2

1 0
0 0

2
0

1

( ) ( ) ( )
⎡
⎣⎢

⎤
⎦⎥∫∑ ∑ε π ρ ρ π δ− ∼ + − ∼ − −−

=

∞

=
�

(19)

In this way, we obtain from (1) that the leading-order outer approximation for v satisfies

x xv S SE 2 , where 2E.S
i

N

i i
i

N

i
1 1

( )∑ ∑π δ∆ = − + − =
= =

� (20)

The solution to (20), subject to smoothness conditions at the two poles, can be written in 
terms of the unique source-neutral Green’s function x xG ; i( ) defined by

x xG G x
1

4
and d 0.S i

unit sphere

( )  
 
∫π

δ∆ = − − =� (21)

The well-known solution to (21) is

x x x x x xG L R R L;
1

2
,

1

4
log 4 1 log .i i i i( ) ( ) [ ] ( )

π π
= − + = − ≡ | − |

�

(22)

Thus, in terms of G, the solution to (20) is given by

x x xv S G v S L R v2 ; 4 E ,
i

N

i i
i

N

i i
1 1

( ) ( )∑ ∑π π= − + = − +
= =

� (23)
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for some constant v to be determined below from matching to each inner solution Vj0.
To determine the spot strengths, Sj for j N1, ,= … , and the unknown constant v, we match 

the outer and inner solutions for v. We expand the outer solution in (23) as x xj→  to obtain

( )∑ ∑π∼ | − | − + + + ∇ ⋅ − +
=
≠

=
≠

=
�x x x xv S R v S L S Llog 4 E ,x

x x
j j

i
i j

N

i ij
i
i j

N

i i j
1 1 j

where x xL logij i i≡ | − |. Then, we use (12a) to write this expression in the inner variable s as

∑ ∑ε ρ
ε
ρ

θ π ε∼ + + − + + + ∇ ⋅
=
≠

=
≠

=

⎡
⎣⎢

⎤
⎦⎥

sv S s s R v S L S J Llog log
2

cot 4 E ,x
x x

j j
i
i j

N

i ij
i
i j

N

i j
T

i2 1 2
2

1 1 j

�

(24)

where s s1
2

2
2 1/2( )ρ = +  and Jj is defined in (12b). In contrast, the far-field behavior of the j th 

inner solution is V S S Vlogj j j j1( )ρ χ ε∼ + + +�. To match the far-field behavior of this inner 
solution with (24), we require that

S R v S L S j Nlog 4 E , 1, , ,j
i
i j

N

i ij j
1

( )∑ε π χ− + + = = …
=
≠

� (25a)

  →∑ρ
θ∼ + ∇ ⋅ | | ∞ = …

=
≠

=
s sV

S
s s S J L j N

2
cot , as ; 1, , .x

x x
j

j
j

i
i j

N

i j
T

i1 2 1 2
2

1 j

�

(25b)

From (25a), and noting the constraint in (20), we obtain that Sj for j N1, ,= …  and v 
satisfy the N  +  1 dimensional nonlinear algebraic system

S S S L v j N S, 1, , ; 2E,j j
i
i j

N

i ij c
i

N

i
1 1

( ) ∑ ∑νχ ν+ − = = … =
=
≠

=
� (26a)

where ν, Lij, and vc are defined by

x xL v
v

R1/log , log , 4 E.ij i j
cν ε
ν

π≡− = | − | ≡ +� (26b)

By writing (26a) in matrix form, we then eliminate the constant vc to derive that the spot 
strengths satisfy the nonlinear algebraic system in (5). In terms of the spot strengths, the con-
stant v is given in (6). This completes the derivation of principal result 1.

3.4.  (Step 3) The solvability condition and higher-order matching

To derive the result in principal result 2 for the slow spot dynamics, we must analyze the first-
order inner problem (16) subject to the far-field condition (see (25b)) that

⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

U s s
U

V
S

s s S J L

0

2
cot , as .x

x x
j

j

j

j
j

i
i j

N

i j
T

i1
1

1 2 1 2
2

1 j

→∑ρ
θ ρ≡ ∼ + ∇ ⋅ = | | ∞

=
≠

=

�

(27)
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Of the four inhomogeneous terms in (16) and (27), the forcing term Uj1 0N  in (16) and the 
term S s s cot / 2j j1 2

2 2( )θ ρ  in (27) correspond to corrections to the leading-order tangent plane 
approximation to the sphere at x xj= . These correction terms are present even for the case of 
a single stationary spot solution. In contrast, the two remaining inhomogeneous terms in (16) 
and (27) result either from inter-spot interactions or from the time operator, 1T , applied to Uj0.

With this motivation, we seek a decomposition for Uj1 into a ‘static’ component, reflecting 
correction terms to the tangent plane approximation, and a ‘dynamic’ component resulting 
from inter-spot interactions. This decomposition of the solution Uj1 to (16) with (27) has the 
form

U U U U U
U

V

U

V

U

V
, , ,j

j

j
j j j

j

j
j

j

j

1
1

1
1
e

1
d

1
e 1

e

,1
e 1

d 1
d

,1
d

⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟≡ = + ≡ ≡� (28)

where, in terms of the operator L of (16), the static component, Uj1
e , satisfies

U U s U sS
s s, ;

0

2
cot , as .j j j j

j
1
e

1 0
2

1
e

2 1 2
2 →L N

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟ρ
θ= − ∈ ∼ | | ∞R� (29)

In contrast, the dynamic component Uj1
d is taken to satisfy

U s U s s
U

0
, ; 0 , as .j

j
j1

d 1 0 2
1
d ( ) →L

T⎛
⎝
⎜

⎞
⎠
⎟ α= ∈ ∼ ⋅ | | ∞R� (30a)

Here α, identified from the second term in (27), is given by

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

S J L S

L

L1

sin

.x x x
i
i j

N

i j
T

i
i
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N

i

i

j

i1 1

,

j

j j

∣∑ ∑α
θ

θ φ

≡ ∇ =

∂
∂
∂
∂

φ φ θ θ

=
≠

=
=
≠

= =

� (30b)

Next, we show that a particular solution to (29) can be identified analytically. The proof is 
presented in appendix C.2.

Lemma 2 (Static component of first-order inner solution).  Suppose that U0( )ρ  and V0( )ρ , 
with s s1

2
2
2 1/2( )ρ = + , are radially symmetric solutions to

U F U V V H U V, 0, , 0, 0 ,s s s s, ,1 2 1 2( ) ( )( ) ( ) ρ∆ + = ∆ + = < <∞� (31a)

U V S o as0, log 1 , ,j→ ( ) →ρ χ ρ∼ + + ∞� (31b)

where s s s s s s,1 2 1 1 2 2( )∆ ≡∂ + ∂ . Then, consider the linearized problem for U1 on s 2∈R  formulated as

U U U U Uscot 2 ,s s j s s s1 , 1 1 0 1 01 2 1 2 2( )( )L M θ≡∆ + = − −� (32a)

U s
F F
H H

S
s s

0

2
cot as .U V

U V U V U V

j
j, ,

1
2 1 2

2

0 0

    →
( ) ( )

⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

ρ
θ≡ ∼ | | ∞

=
M� (32b)
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Here U U V, T
1 1 1( )≡  and U U V, T

0 0 0( )≡ , Then, a solution to (32) is

U U U
s

s s
2

cot cot .j s j s1
2
2

0 1 2 01 2( ) ( )θ θ= − ∂ + ∂� (33)

By applying this lemma to (29) we identify the static component as

U U U
s

s s
2

cot cot ,j j s j j s j1
e 2

2

0 1 2 01 2θ θ= − ∂ + ∂� (34)

where U U V,j j j
T

0 0 0( )=  satisfies (18). The key implication of this lemma is that the deter-
mination of Uj1

e  is independent of the particular form of the reaction kinetics. As such, this 
lemma can be readily used for analyzing the dynamics of localized spot patterns for other RD 
systems.

The final step in the analysis of the slow dynamics is to impose a solvability condition on 

the dynamic component (30) for Uj1
d. Since U 0s 0i( )L ∂ =  for i  =  1, 2, the dimension of the 

nullspace of the adjoint L� is two-dimensional. For the homogeneous adjoint problem

0,s s j
T

,1 2( )L Ψ Ψ Ψ≡∆ + =M�� (35)

we look for separable solutions of the form

( ) ( ) ( )
( )
( )ρ ω ρ ω
ρ
ρ ρ

Ψ = ≡ ∆ ≡∂ + ∂ρ ρρ ρ
⎛
⎝
⎜

⎞
⎠
⎟P PT

P
P

, , ,
1

,1

2
� (36)

for local polar coordinates s cos , sin T( )ρ ω ρ ω=  where T cos , sin( ) { }ω ω ω= . Thus, P 
satisfies

P P P
1

0,j
T

2
M

ρ
∆ − + =ρ� (37)

with P 0→  as →ρ ∞. To determine the appropriate far-field behavior for P, we observe that 
since U 0j0 →  exponentially as →ρ ∞, then jM  from (16) satisfies

1 1
0 0

, as .j
T ( )→   →M ρ− ∞

As such, the solution P2 to (37) satisfies P2
1( )ρ= −O  as →ρ ∞, consistent with the decay-

ing solution to P P 02
2

2ρ∆ − =ρ
− . We normalize the eigenfunction by imposing that P 1/2 ρ∼  

as →ρ ∞. With this normalization, and from the limiting form of the first row of j
TM  for 

1ρ� , we conclude from (37) that P 1/1 ρ∼  as →ρ ∞. In this way, we solve (37) subject to 
P 1/ , 1/ T( )ρ ρ∼  as →ρ ∞.

We now impose a solvability condition on the solution to (30) with PT1 ( )ωΨ = . We let 

{ ⩽ }σ≡σ s sB : . By applying Green’s second identity to Uj1
d and 1Ψ  we obtain

U U s U Ulim d lim d .
B

T
j j

T T
j j

T
1 1

d
1
d

1
0

2

1 1
d

1
d

1[ ( ) ] ( ( ) )
→ →

L L∫ ∫ σ ωΨ Ψ Ψ Ψ− = ∂ − ∂
σ σ

π
ρ ρ

ρ σ∞ ∞ =σ

�

� (38)
We now use the limiting far-field asymptotic behavior

U T
0

cos sin
,

1/
1/

, as ,j1
d

1 2
1 ( )   →⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝
⎜

⎞
⎠
⎟α ρ ω α ρ ω
ρ
ρ

ω ρΨ∼ + ∼ ∞

to calculate the right hand-side of (38), labeled by Λ, as
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T
T
T

2 cos 2 sin d
2 if cos
2 if sin

.
0

2

1 2
1

2
[ ] ( )   ( )

  ( )
⎧
⎨
⎩∫ α ω α ω ω ω
πα ω ω
πα ω ω

Λ≡ + =
=
=

π
� (39)

Then, by substituting the right hand-side of (30) into the left hand-side of (38), and using 
U U coss j j0 01 ( )ρ ω∂ = ′  and U U sins j j0 02 ( )ρ ω∂ = ′ , we obtain that

P U U Tlim cos sin sin d d .j j j j j
0 0

2

1 0 0( ) [ ( ) ( ) ] ( )
→ ∫ ∫ ρ θ ρ ω θ φ ρ ω ρ ω ρ σΛ = − +′ ′ ′ ′
σ

π

∞

∞

�

(40)

Upon using the two forms T cos( )ω ω=  and T sin( )ω ω= , (40) with (39) for Λ, reduces to 
(7a), where we have defined S f;j j( )=A A  by

U P d ,j j
0

0 1( ) ( )∫ ρ ρ ρ ρ≡ ′
∞

A� (41)

which appears in the ODE part of our result (7) for slow spot dynamics. Then, by substitut-
ing the second expression for , T

1 2( )α α α= , as given in (30a), into (7a) we obtain the slow 
dynamics (7) as written in principal result 2.

To implement (7), we must numerically compute S f;j( )A  from first solving the core prob-
lem (18) for Uj0 and then the adjoint problem (37) with far-field behavior P 1 , 1/ T( )ρ ρ∼  as 

→ρ ∞. In the left panel of figure 2 we plot jA  versus Sj for f  =  0.3. In the right panel of 
figure 2 we plot jA  versus Sj for f  =  0.4, f  =  0.5, f  =  0.6, and f  =  0.7.

Finally, we show how (9) follows from (7). We first differentiate x with respect to σ to 

derive x J , sinj j j j j
T( )θ φ θ=′ ′ ′ , where Jj is defined in (12b). In (7a) we then use the first expres-

sion in (30a) for α and pre-multiply both sides of the resulting expression with xj′. This yields 
that

x J J S L
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∑= − ∇′
=
≠

=

A direct calculation using (12b) shows that J J Ij j
T

j= −Q , where x xj j j
T=Q . In addition, we 

have ∣ ( )∇ = − | − |= x x x xL /x x xi j i j i
2

j . In this way, we get

x
x x

x x
SI
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i
i j
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i
j i

j i1
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[ ]
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∑= − −
−

| − |
′

=
≠

A
Q� (42)

We then multiply both sides of this expression by xj
T to obtain

x
x

x x
x x xC C

S1

2

d

d
1 ,

2
cos ,

j
j j j

j i
i j

N
i

j i
j j i ij

2
2

1
2

2( ) ( )
A
∑σ

γ
| |

= − | | ≡−
| − |

| | − | || |
=
≠

� (43)

where ijγ  is the angle between xi and xj. If x 0 1j( )| | =  for j N1, ,= …  and x x0 0i j( ) ( )≠  for 
i j≠ , then one solution to (43) is x 1j( )σ| | =  for all 0⩾σ , so that, as expected, the centers of 
the spots remain on the unit sphere for all time. Along this specific solution C 0j≠  since Si  >  0 

for i N1, ,= … . Finally, (9) follows from (42) by noting that xI 0j j( )− =Q  when x x 1j
T

j = .
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4.  Quasi-equilibrium spot patterns: existence and stability

As we characterized in principal result 2, quasi-equilibrium spot patterns will exhibit slow 
spot dynamics on a long 2( )−εO  time-scale. However, as was shown in [32], such patterns can 
be unstable on an 1( )O  time-scale in certain parameter regimes. In order to analyze the stabil-
ity of the quasi-equilibrium spot patterns, we must first analyze the bifurcation behavior of the 
solution set of the nonlinear algebraic system (5) for the spot strengths S S, , N1 …  for a given 
spatial configuration x x, , N1{ }…  of spots. The stability analysis in [32] focused largely on 
quasi-equilibrium spatial patterns for which the spots have a common spot strength. Our goal 
here is to extend this prior analysis by identifying solutions to (5) where the spots can have 
rather different spot strengths. The stability of these patterns is analyzed through an exten-
sion of the stability analysis of [32]. Below, our analytical and numerical analysis reveals that 
there are two relevant asymptotic ranges where different behaviors are expected: the first is 
E 1( )= O , while the second corresponds to a distinguished limit where E 1/2( )ν= O  as 0→ν . 
It is in this latter regime where, for certain symmetric spatial configurations of spots leading 
to a cyclic Green’s matrix, that transcritical bifurcations of quasi-equilibrium spot patterns 
occur (see figures 3 and 6 below). Before considering these ranges of E, we first outline the 
stability analysis of [32].

4.1.  Stability criterion for the quasi-equilibrium spot patterns

The stability analysis in [32] allowed for perturbations of the quasi-equilibrium spot pattern that 
are either radially symmetric or non-radially symmetric in an ( )εO  neighborhood of each spot.

The linear stability of the quasi-equilibrium pattern with respect to non-radially symmetric 
perturbations near each spot was studied in section 3.1 of [33] from the numerical computa-
tion of an eigenvalue problem. There, it was found that a spot centered at xj is unstable to 

Figure 3.  Bifurcation diagrams resulting from numerical solutions of (5) with f  =  0.3 
for the case of N  =  2 spots centered at ( ) ( )φ θ π=, 0, /2  and ( ) ( )φ θ π π=, , /2 . The 
larger plot (a) shows the three-dimensional bifurcation structure, with ( )+S Slog 1

2
2
2  as 

a function of ν and E. The dashed path corresponds to ν= dE 0  where ν=S d1,2 0  
from (70). Individual spot strengths corresponding to fixed values of E and ν are shown 
in (b) and (c). The dashed line (c) corresponds to Type II asymmetric solutions, given 
from (64). To leading order they are ∼S 2E1  and ( )ν∼S d / 2E2 0 . In (b), the solution S1 
and S2 to the reduced system (69), valid for ( )ν= OE 1/2 , overlays almost exactly with 
the full numerical solution.
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a peanut-shape perturbation when S fj 2( )>Σ . The subscript on Σ refers to instability with 
respect to the local peanut-splitting angular mode cos 2ω where x xarg j( )ω = −  as x xj→ . The 
curve 2Σ  versus f is plotted in figure 4 of [32], and we have

0.3 11.89, 0.4 8.21, 0.5 5.96, 0.6 4.41, 0.7 3.23.2 2 2 2 2( ) ( ) ( ) ( ) ( )Σ ≈ Σ ≈ Σ ≈ Σ ≈ Σ ≈
� (44)

This peanut-shaped unstable mode was found numerically in [32] to trigger, on an 1( )O  time-
scale, a nonlinear spot self-replication event for the j th spot when S fj 2( )>Σ .

In contrast to the non-radially symmetric case, the stability analysis of the quasi-equi-
librium spot pattern with respect to radially symmetric perturbations near each spot is more 
intricate since this analysis is based on properties of a globally coupled eigenvalue problem 
(GCEP) (see [32]). To formulate the stability problem, we first linearize (1) around the quasi-
equilibrium solution uqe and vqe by introducing ψ and N by

u u v v Ne , e .t t
qe qeψ= + = +λ λ

The spectral problem for ψ and N is singularly perturbed, with an inner region near each spot 
and an outer region away from the spot locations. We now summarize the singular perturba-
tion analysis of section 3.2–3.4 of [32], for the formulation of the GCEP.

In terms of the core solution Vj0 and Uj0, the inner problem near the j th spot is to determine 
the radially symmetric solution to

fU V fU N N U V U N2 , 2 0,j j j j j j j j j j j j j j j0 0 0
2

0 0
2ψ ψ ψ λψ ψ ψ∆ − + + = ∆ + − − =ρ ρ

� (45a)
subject to the boundary conditions

N N B o0 0 0 ; 0, log 1 , as ,j j j j j( ) ( ) → ( )   →ψ ψ ρ ρ= = ∼ + + ∞′ ′� (45b)

for j( )ψ ρ , Nj( )ρ  on 0 ρ< <∞, where ρ∆ ≡∂ + ∂ρ ρρ ρ
−1 . The key quantity to calculate from the 

solution to this problem is B B S ,j j j( )λ=  at each f  >  0.
The analysis in the outer region involves the eigenvalue-dependent Green’s function 
x xG ; j( )λ  on the sphere, defined for 0λ≠  by

( ) ( )   →τλ δ
π

∆ − = − − ∼− | − | + +λ λ λ λx x x x x xG G G R o,
1

2
log 1 as ,S j j j

� (46)
where Rλ is independent of xj. In terms of Gλ, Rλ, and Bj, we then define a symmetric Green’s 
matrix λG  and a diagonal matrix B by

R G

G R

B

B
,

0

0
,

ij

ij N

1
⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟≡ ≡λ

λ λ

λ λ

� �G B� (47)

where x xG G ;ij i j( )≡λ λ . In terms of λG  and B, we then define the matrix S f, , ,( )λ τ=M M  by

I 2 ,πν ν≡ + +λM G B� (48)

where 1/logν = − ε  and I is the N N×  identity matrix. In terms of M, the following stability 
criterion was derived in section 3.4 of [32]:

Principal Result 3 (Globally Coupled Eigenvalue Problem (GCEP)).  For 0→ε , the 
quasi-equilibrium pattern is unstable to locally radially symmetric perturbations near each 
spot when
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det 0,( ) =M� (49)

for some λ on the range Re 0( )λ > . Alternatively, the quasi-equilibrium pattern is linearly 
stable if det 0( )≠M  for any λ in Re 0( )λ > .

Note that in [32], the criterion (49) was used primarily to detect parameter values corresp
onding to a zero eigenvalue crossing. Here, we extend the analysis to examine (49) near the 
zero-eigenvalue crossing where 1λ� . Below, these new results will be used to determine the 
local stability behavior of spot patterns near the zero eigenvalue crossing.

To study the singular limit 0→λ , we first calculate λG  as 0→λ . Since G G4 1[ ]πτλ∼ +λ
−  

as 0→λ , where G satisfies (22), we obtain in terms of G and 0E  of principal result 1 that

N
2 ,

2
log 4 1 1 ,0 [ ( ) ]πν µ ν µ

ν
τλ
τλ∼ − ≡ − +λG E G� (50)

Since 0E  has rank one, we can substitute this expression into (48) and then use the Sherman–
Woodbury–Morrison formula to get for 1λ| |�  that

I I I I I I
1

.0 0
1

0 0( ) [ ( ) ( )] ( ) ( )
⎡

⎣
⎢

⎛
⎝
⎜

⎞
⎠
⎟

⎤

⎦
⎥µ ν µ µ ν

µ
µ

∼ + − + − ∼ + − −
+

−−M E E G B E E G B

� (51)
Since the spectrum of I 0µ+ E  is known, we have for 1λ| |�  that

I Idet 1 det ,
1

.0 0 0( ) ( ) ( ) ( )
⎡

⎣
⎢

⎛
⎝
⎜

⎞
⎠
⎟

⎤

⎦
⎥µ ν

µ
µ

= + ≡ − −
+

−M M M E G B� (52)

Since / 1 1( ) →µ µ+  as 0→λ , it follows that a zero-eigenvalue crossing occurs when

I Idet 0,0[ ( )( )]ν− − − =E G B� (53)

where B is to be evaluated at 0λ = . By differentiating the core problem (18) with respect to Sj 
and comparing the resulting system with (45), we conclude that the diagonal entries of B are

S S, 0 .j j j( ) ( )χ= ′B� (54)

The criterion (53) for a zero eigenvalue crossing with Sjj j( ) ( )χ= ′B  was previously derived in 
[32]. For 1λ� , our new criterion det 00( ) =M  in (52) will be used below to determine the 
behavior of any eigenvalues of the GCEP near a zero eigenvalue crossing.

The stability analysis below relies on determining the asymptotics of B S ,j j( )λ  as S 0j → . 
The following new result, proved in appendix C.3, gives the leading-order term in Bj as S 0j →  
for any λ:

Lemma 3 (Diagonal entries of B).  For S 0j → , we have from (45) that

B
B

S
B

f d

f

b
1 ,

1 1

1 2
,j

j

0
2 0

0ˆ
( ) ˆ ( ) ( )

( )
λ

λ λ
∼− + ≡

− +
+ −

O
K

� (55a)

where b w d 4.934
0

2∫ ρ ρ≡ ≈
∞

 and ( )λK  is defined in terms of the unique solution w 0( )ρ >  of 

w w w 02∆ − + =ρ , with w 0→  as →ρ ∞, by

w L w
b

d
2

.
0

0
1 2( ) ( )∫λ ρ λ ρ≡ − −

∞
−K� (55b)
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Here L0 is the local operator defined by L w20Φ≡∆ Φ− Φ+ Φρ . For λ real, the function ( )λK  
satisfies

( ) ( )     ( ) →   →K K Kλ λ σ λ λ σ= > < < +∞′ −b0 /2, 0 on 0 , as .0 0� (56a)

Here 00σ >  is the unique positive eigenvalue with eigenfunction 00Φ >  of L0 σΦ = Φ, normal-

ized as d 1
0 0

2∫ ρ ρΦ =
∞

. For 0λ σ δ= −  with 0→δ +, we have

C C w w/ 1 , d d .
0

2
0

0
0( ) ( ) ⎜ ⎟⎜ ⎟

⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠∫ ∫λ δ ρ ρ ρ ρ∼ + ≡ Φ Φ

∞ ∞
K O� (56b)

For 0λ = , and with d0 and d1 as defined in (B.1), we have the two-term expansion

B S S
d

S
d S, 0 , as 0.j j j

j
j

0
2 1( ) ( ) →χ= ∼− +′� (56c)

4.2.  An overview of the quasi-equilibria solution

Before deriving the asymptotic form of the spot strengths, we first explore the global bifurca-
tion structure and numerically solve the full nonlinear algebraic system (5) for a particular 
arrangement of N  =  2 spots. Numerical solutions of the system for different values of E and ν 
are found using the continuation and bifurcation software AUTO-07P (see [9]), and the con-
tinuation process is initiated by using, as an initial guess, the results from the 0→ν  asymptot-
ics (to be derived in the next section).

First, examine figure 3(a), which corresponds to the case of f  =  0.3 and N  =  2 spots cen-
tred at , 0, /2( ) ( )φ θ π=  and , , /2( ) ( )φ θ π π= . The numerically computed bifurcation structure 

resides within S, E, log 2
2( )ν || ||  space, and for each point in the , E( )ν  plane, there is either one 

or two possible quasi-equilibria, distinguished by the size of the norm S 2
2∥ ∥ .

For a fixed value of E, in figure  3(c) we plot the curves S1,2 versus ν. Note that when 
N  =  2, the matrix G is cyclic, and there exists a solution of (5) with the common spot strength, 
S N2E/c = . This corresponds to the flat line S1,2  =  3 in the figure. We shall call these Type I 
patterns. We also see that when ν is sufficiently small, there appears to be an additional asym-
metric pattern that bifurcates from the Type I branch, with one small ( )νO  spot and one large 

1( )O  spot. We refer to these as Type II patterns. Both Type I and II solutions are studied in 
section 4.3.

However, it is apparent from figure 3 that there also exists a distinguished limit if E 0→  
simultaneously as 0→ν . This is shown via the curves SE, 1,2( ) in subplot (b). As similar to 
Type I and II solutions, there is a shared curve where S S1 2=  (the centre curve of the sub-
plot), and two flanking curves corresponding to a small and large spot, which bifurcate from 
the centre branch. In section 4.3, we demonstrate that the distinguished limit is described by 

( )ν= OE  as 0→ν , and the solutions shown in (b) near the bifurcation point correspond to 
spot strengths of ( )νO . We call these Type III patterns and they correspond to both equal 
and unequal spot strengths. We will also later derive the formula for the dashed line, E E( )ν=  
in figure 3(a), which describes the critical bifurcation point of the E, 0→ν  limit, where the 
asymmetric branches split from symmetric branch.

For N  >  2, the situation is more complex in the case of the asymmetric Type II pat-
terns, and there may be m  <  N spots of strength 1( )O  and (N  −  m) spots of strength ( )νO . 
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However, the classification remains the same, and we can expect the following three types 
of solutions:

   ( ) ( )

   ( ) ( )
( )

   ( ) ( )

O

O
O

O

ν

ν

= = …

=
= …
= + …

= = …

⎧
⎨
⎩

S j N

S
j m
j m N

S j N

Type I symmetric : 1 , 1, 2, , ,

Type II asymmetric :
1 ,

,
1, 2, , ,

1, , ,

Type III a/symmetric : , 1, 2, , .

j

j

j
1/2

� (57)

We now comment on the splitting of the asymmetric branches from the symmetric branches 
for general number of spots. If the spot locations, xj, for j N1, ,= …  are distributed in such 
a way that

e ek ,1=G� (58)

then a solution to (5) is the equal spot-strength solution =S eSc  where

S
N

2E
.c =� (59)

The property (58) holds for any two-spot pattern, for a pattern of equally spaced spots on a 
ring of constant latitude, for spots centered at the vertices of any of the platonic solids (see 
table 1 of [32] and section 5 below).

Assuming that N  >  1 and that (58) holds, then a bifurcation occurs if and only if the 
Jacobian matrix of S( )N  in (5) is singular when S eSc= . By setting S eSc Φ= + , with 1Φ| |�  
in (5), a bifurcation from the symmetric solution branch occurs if and only if there exists a 
non-trivial Φ to

SI I I 0.c0[ ( )( ( ) )]ν χ Φ− − − =′E G� (60)

Upon comparing (60) with (53), we observe that this bifurcation point corresponds to a zero-
eigenvalue crossing, and hence an exchange of stability for the symmetric solution branch. 
Since G is a symmetric matrix with e ek1=G , it follows that there exists eigenvectors, qj, with 
q qkj j j=G , for j N2, ,= … , where q e 0j

T = . It is readily verified that qjΦ =  satisfies (60) when 

S Sc cj=  for j N2, ,= … , where Scj satisfies the nonlinear algebraic equation

k S j N0, 2, , .j c
1

j( )ν χ− + = = …′−� (61)

From (59), this indicates that a bifurcation occurs at the j N2, ,= …  points where

NS
E E

2
.j

cj= =� (62)

For 1ν� , this yields Ej
1/2( )ν= O .

Note, however, that it may be the case that the eigenvalues, qj, are not distinct, and in part
icular, this can certainly occur if, e.g. the spots are arranged on a plane of constant latitude and 
G is a cyclic matrix. In this case, the number of bifurcating branches will still be N  −  1, but 
the number of bifurcation points (in E) will be equal to the number of distinct eigenvalues. In 
section 4.4, we will derive the dashed curve E E( )ν=  shown in figure 3(a), which is a case of 
(62) in the uniform limit of E 0→  and 0→ν , and where the bifurcation points coalesce.

4.3.  Quasi-equilibria for O( )=E 1  (type I and II)

We first consider the symmetric type I patterns, for which all spots are characterized by 
S 1j ( )= O . For 1/log 1ν = − �ε , a two-term regular perturbation expansion of (5) yields that
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S e e
E

N
I

2
.0

2[ ( ) ( )]ν ν∼ + − +E G O� (63)

Here S S S, , N
T

1( )= … , e 1, , 1 T( )= … , 0E  and G are defined in principal result 1.
To determine the stability property of Type I patterns, we observe from (48) that 

I ( )ν= +M O  as 0→ν  when S 1( )= O  and 1( )λ = O . In addition, from (52), we have 
I0 ( )ν= +M O  for 0λ = . As such, since both M and 0M  are non-singular for 0→ν  when 

S 1( )= O , we conclude from the GCEP criterion in principal result 3 that this class of spot 
pattern is linearly stable to radially symmetric perturbations near each spot when 1ν� . As 
such, the stability criterion for this class of solutions is simply that S fj 2( )<Σ  to prevent spot 
self-replication instabilities triggered by a locally non-radially symmetric perturbation near 
the j th spot.

Next, consider Type II patterns. Suppose that there are m 1⩾  small spots, with Sj ( )ν= O  for 
j m1, ,= … , and N  −  m large spots with S 1j ( )= O  for j m N1, ,= + … . By using S d S/0( )χ ∼  
as S 0→  in (B.1), a perturbation calculation on (5) shows that the spot-strengths for this pat-
tern have the following two-term asymptotics for 1ν� :

S
S S j m N

S S j m

for 1, ,

for 1, ,
,j

j

j

0 1

0
2

1

 

 ⎪

⎪
⎧
⎨
⎩

ν

ν ν
∼

+ + = + …

+ + = …

�

�

� �

� (64a)

where S0, Sj1, S0
�, and Sj1

�, are given by

S
N m

S
md

N m

2E
,

2E

2E
,j j0 1

0 L� �=
−

= − +
−

� (64b)

S
d N m

S
d N m

d N S
N m2E

,
8E

2E
4E

.j j0
0

1
0

2

3 0 0

2( ) ( ) ( )
( )

⎡
⎣⎢

⎤
⎦⎥

χ=
−

=
−

− −
−

L�

�

(64c)

Here d b f f1 /0
2( )= −  from (B.1), while jL  is defined by

x xL
N m

L L
1

, log .j
i m

i j

N

ij
i m

i k

N

k m

N

ik ij i j
1 1 1

∑ ∑ ∑≡ −
−

≡ | − |
= +
≠

= +
≠

= +

L� (64d)

From the criterion in principal result 3, we now show that these Type II patterns are all 
unstable.

Principal Result 4 (Stability of Type II patterns).  For 0→ε , the Type II quasi-equilibrium 
patterns with spot strengths in (64) are all unstable on an 1( )O  time-scale.

Proof.  For 1ν� , we show that det 0( ) =M  for some λ on the positive real axis that is ( )νO  
close to the eigenvalue 00σ >  of the local operator L0 defined in lemma 3. We set 0 0λ σ δ ν= −  
for some 00δ > , and look for a root of (49) where M is defined in (48). From (55a) and (56b) 
of lemma 3, and (64), we obtain for the small spots that Bj

1( )ν= −O , with

B
d N m

B B
f d

f

b

C
j m

4E
,

1 1

1 2
, 1, , ,j

2

0
2 2 0 0 0

0 0

0( )
ˆ ˆ ( ) ( )

ν
δ

σ
σ

∼−
−

≡
− +
+ −

= …− −

�

(65)

where C  >  0 is defined in (56b). In contrast, for the large spots we have B 1j ( )= O  for 
j m N1, ,= + … . Upon substituting (65) into (48), we obtain that
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d N m
BI I4E 0

0 0
,m

2

0
2 2 0 0
( )

ˆ ( )⎜ ⎟
⎛
⎝

⎞
⎠δ ν= −

−
+−M O� (66)

where Im is the m m×  identity matrix. Upon setting det 0( ) =M , we get that M is singular 
when

d N m

B

d N m f C

f b4E 2E

1

1 1
0.0

0
2 2

2
0

0
2

2
0

0

( )
ˆ

( ) ( )
( )( )

δ
σ

σ
=

−
=

− + −
− +

>
−

� (67)

Thus, for Type II patterns the GCEP has an eigenvalue Re 0( )λ >  with asymptotics 
0 ( )λ σ ν= −O .� □

4.4.  Quasi-equilibria for O( )ν=E  (type III patterns)

As shown in figure 3, there exists a distinguished limit when both E and 0→ν  simultaneously, 
leading to Type III patterns. The correct scaling that captures this limit is E ( )ν= O  and we 
introduce the re-scaled new variables Sj̃, Ẽ, and ṽ, defined by

S S v v, E E , ,j j c
1/2 1/2 1/2˜ ˜ ˜ν ν ν= = =

into the alternative form (26a) of the nonlinear system for the spot strengths. Upon using 
S d S/j j0( )χ ∼  as S 0j →  from (B.1), we obtain that Sj̃ for j N1, ,= …  and ṽ satisfy the leading-

order result

S S
d

S
v S, 2E,j j

j j

N

j
0

1

( ) ˜
˜ ˜ ˜ ˜∑≡ + = =

=

H� (68)

where d0 is given in (B.1). The function ( )ξH  in (68) is convex for 0ξ>  and satisfies 
( ) →ξ +∞H  as 0→ξ + and as →ξ ∞. It has a global minimum at d0ξ =  with minimum 

value ( ) =H d d20 0.
With these properties of ( )ξH , it follows that each spot can either be of small spot strength, 

S̃−, or large spot strength, S̃+, where S d S0 0˜ ⩽ ⩽ ˜< − +. To construct an asymmetric pattern 
with N− small spots and N N N( )= −+ −  large spots, we must solve the leading-order problem

S S N S N N S E, 2 .( ˜ ) ( ˜ ) ˜ ( ) ˜ ˜= + − =− + − − − +H H� (69)

The bifurcation point where asymmetric quasi-equilibria emerge from the common spot 
strength solution branch is obtained by setting N−  =  0 and S S˜ ˜=− +, which yields

E
N d

S S d
2

and .0
0˜ ˜ ˜∼ = ∼− +� (70)

For different N− and N+ , in figure 4 we plot Sj
N

j1
2˜∑ =  versus Ẽ, as computed from (69), illus-

trating the symmetric and asymmetric solution branches.
Notice furthermore that the asymmetric branches for (69) that emerge from the bifurcation 

point (with the symmetric branch) can be continued into the regime where E 1/2˜ ( )ν= −O , or 
equivalently where E 1( )= O . These lead to the unstable Type II mixed patterns studied in 
section 4.3, which consist of both small and large spots. This is the connection between the 
two shaded planes in figure 3.

However, the question of whether the prediction of a common bifurcation point from this 
leading-order system (69) is robust to perturbations in ν from the full system (5) is another 

P H Trinh and M J Ward﻿Nonlinearity 29 (2016) 766



787

matter entirely, and is found to depend on whether the condition (58) on the Green’s matrix 
holds or not (see figures 5 and 6). When (58) holds, (61) will be used below in (71) to show 
that, for N  >  2, higher order in ν terms lead to transcritical bifurcation points in E that are 

3/2( )νO  close.

4.5.  Comparisons with numerical results

The conclusion from our analysis in section 4.2 and from figure 3 regarding the global bifur-
cation structure for N  =  2 is as follows. First, for N  =  2, the common solution with S eE=  
is an exact solution for all ν for any two-spot pattern. This follows since G is cyclic for any 
two-spot configuration. Second, in the limit 0→ν  with E 1( )= O , the Type II patterns are 
given by setting m  =  1 and N  =  2 in (64). Third, for 0→ν  with E 1/2( )ν= O  the asymmetric 

Figure 4.  Bifurcation diagrams for the leading-order problem (69). The horizontal axis 

corresponds to Ẽ and the vertical axis to the solution measure ( ˜ ˜ )+…S SN1
2 2

. The circular 
nodes correspond to where asymmetric branches bifurcate from the symmetric solution 
branch. The notation corresponds to [ ]− +N N, , the number of −̃S  and ˜+S  spots.

[0, 2]

[1, 1]

[2, 0]

(a) N = 2

[0, 3]
[1, 2]
[2, 1]

[3, 0]

(b) N = 3

[0, 4]
[1, 3]
[2, 2]
[3, 1]

[4, 0]

(c) N = 4

[0, 5]
[1, 4]
[2, 3]
[3, 2]

[4, 1]

[5, 0]

(d) N = 5

Figure 5.  Bifurcation diagrams of (5) in ( ∥ ∥ )ν S, E, 2
2  space corresponding to N  =  3 and 

f  =  0.3. The vertical axis is ( )+ +S S Slog 1
2

2
2

3
2 . The spots centered symmetrically at 

( ) {( ) ( ) ( )}φ θ π π π π π=, 0, /2 , 2 /3, /2 , 4 /3, /2 . For small values of ν, there are two Type 
II patterns originating from a common bifurcation point from the symmetric solution 
branch in the ( )ν= OE 1/2  regime. The two planes correspond to ν = 0.01 and =E 6.23.
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quasi-equilibrium is characterized by (69), and indeed bifurcates from the symmetric solution 
branch for any 0ν>  small. This bifurcation, calculated from (70), is shown in the dashed 
curve in figure 3(a).

Recall from section 4.2 that whenever the Green’s matrix G satisfies (58) there is a solution 
(for all ν) where the spots have a common strength. Typically, there is a degenerate eigenvalue 
for G of multiplicity two in the subspace perpendicular to e. This must necessarily be true if 
G is cyclic.

We now consider the case N  =  3 and study the effect on the bifurcation structure of solu-
tions to (5) on whether (58) holds or not. In figures 5 and 6, we show numerical solutions for 
f  =  0.3 and N  =  3 spots of two different spatial configurations. The results in figure 5 corre-
spond to when the spots are placed equidistantly along the equator, and (58) holds, while for 
the other figure, the spots are placed asymmetrically along the equator, so that (58) does not 
hold. The bifurcation curves are plotted in S, E, log 2

2( ∥ ∥ )ν  space.
In both configurations, when E 1( )= O  is fixed, we observe two Type II patterns in the 

0→ν  limit. These solutions are found by setting (m, N )  =  (1, 3) and (m, N)  =  (2, 3) in (64). 
For the symmetric arrangement of figure 5, S e2E /3=  is a solution for all 0ν> , and for suf-
ficiently small ν, it is observed that the Type II patterns bifurcate from the symmetric branch 
in the E 1/2( )ν= O  regime at a common bifurcation point. In the 0→ν  limit, the common 
bifurcation point is given by (70), and as seen in the figure, the agreement with the numerical 
solutions is very good. For this case, G is a cyclic matrix, so that there is only one eigenvalue 
of multiplicity two in the subspace orthogonal to e. As such, from (61), there is still a common 
bifurcation point when higher order terms in ν are included, and indeed this is evident from 
the figure.

However, for the asymmetric arrangement of figure 6, where (58) does not hold, we observe 
that for any 0ν>  the Type II solution branch does not undergo a transcritical bifurcation when 
path-followed into the E 1/2( )ν= O  regime. This figure  shows that the leading-order 0ν =  
approximation (69), which predicts a common bifurcation point, is not robust to perturbations 
in 0ν>  and, therefore, exhibits imperfection sensitivity to higher order terms.

Figure 6.  Same as for figure  5 but with spots are centered asymmetrically at 
( ) {( ) ( ) ( )}φ θ π π π π π=, 0, /2 , /4, /2 , , /2 . For small values of ν, there are two Type 
II patterns for ( )= OE 1  that do not originate from transcritical bifurcations in the 

( )ν= OE 1/2  regime. The two planes correspond to ν = 0.01 and =E 6.23.
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4.6.  Stability criterion for O( )ν=E  (type III patterns)

We now return to the issue of stability discussed in section 4.1, but make use of the limit 
E, 0→ν  derived in section 4.4 in order to focus on the behaviour near the critical bifurcation 
points E Ej=  given in (62).

By using (56c) for Sj( )χ′  as S 0j →  in (61), and then letting 0→ν , we obtain

N d
d j NE

2
1 , 2, , .j j

0
1

2[ ( ) ( )]
ν

ν κ ν∼ − − + = …O� (71)

Again, we remark that the eigenvalues kj for j N2, ,= …  of G in the subspace perpendicular 
to e are in general not distinct. This eigenvalue degeneracy is necessarily the case when G is 
a cyclic matrix. In this case, the number of bifurcating branches is N  −  1, but the number of 
bifurcation points in E is the number of distinct kj in j N2, ,= … .

From (71), the leading-order stability threshold is E Ec∼  with N dE /2c 0 ( )ν ν≡ = O . 
To analyze the zero eigenvalue crossing as E crosses above Ec, we use (52) together with 

B S Ic0
2ˆ∼− −B  for S N2E/ 1c = � , to get for 1λ�  that

q q q q
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where q qj j jκ=G  for j N2, ,= … . Therefore, det 00( ) =M  for 1λ| |�  when

B

S

1
0,j

c

0
2

ˆ
ν
κ− + =� (72)

where S N2E/c =  and B0ˆ  is defined in (55a). By solving (72) for E, we obtain to leading order 
in ν that

f
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Upon using the properties of ( )λK  in (56a) we conclude that 0 1( ) =Z , and we calculate
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on 0 0λ σ< < . Therefore, for any E Ec<  with E Ec−  small, there exists a unique 1λ ��  with 
0λ >� .

We conclude that the zero eigenvalue crossing is such that the symmetric solution branch is 
unstable for N dE E /2c 0ν< =  for E Ec−  small. For E Ec>  with E Ec−  small, the spectrum 
of the linearization around the symmetric solution has no unstable real eigenvalues. Through 
the detailed analysis of a nonlocal eigenvalue problem, it was shown in section 4.4 of [32] that 
in fact there are no unstable eigenvalues in Re 0( )λ > , and consequently the symmetric solu-
tion branch is linearly stable when E Ec>  with E ( )ν= O .

5.  A selection of results for spot dynamics

In this section we give some results for spot dynamics as obtained by solving the DAE sys-
tem (9) and (5) numerically with E 1( )= O . Based on the stability analysis of section 4, we 
only consider patterns for which S 1j ( )= O  as 0→ν . For such patterns, and when E 1( )= O , 
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the only possible instability is a spot self-replication instability (see [32]), which only occurs 
when a particular source strength SJ exceeds the spot self-replication threshold f2( )Σ . As such, 
we focus on the regime S 1j ( )= O  and E 1( )= O  as 0→ν , where the slow dynamics (9) is valid 
provided that each Sj is below the spot self-replication threshold, i.e. Sj 2<Σ  for j N1, ,= … .

For a two-spot pattern the following result, as proved in appendix C.4, provides an explicit 
solution to the DAE system:

Lemma 4 (Explicit two-spot solution).  Let 1,2 1,2( )γ γ σ=  denote the angle between the spot 

centers x1 and x2, i.e. x x cosT
2 1 1,2γ= . Then, provided that E f2( )<Σ , we have for all time 

t 02 ⩾σ = ε  that

cos /2 cos 0 /2 e .1,2 1,2
E / E( ) ( ( ) ) ( )γ γ= σ− | |A� (75)

Since 1,2 →γ π as →σ ∞ for any 01,2( )γ , the steady-state two-spot pattern will have spots cen-
tered at antipodal points on the sphere for any initial configuration of spots.

Before proceeding, we also note that in in (8) and (9), the spot locations are coupled to the 
spot strengths by (5). One key feature of the DAE system (9) and (5) is that it is invariant under 
an orthogonal transformation. The following lemma, proved in appendix C.1, will be used in 
section 5 for classifying equilibria of this DAE system:

Lemma 5 (Invariance under orthogonal transformations).  Suppose that xj( )σ  for 

j N1, ,= …  is the solution to the DAE system (9) and (5) with x x0j j
0( ) =  for j N1, ,= … . Let 

R be any time-independent orthogonal matrix. Now let j( )ξ σ  satisfy (9), (5) with x0j j
0( )ξ = R  

for j N1, ,= … . Then, xj j( ) ( )ξ σ σ= R  for all j N1, ,= … .

We emphasize that results similar to the DAE dynamics (5) and (9) can be derived for other 
RD systems. In appendix D, we give a corresponding result for the Schnakenberg model.

5.1.  Steady-state patterns from random initial arrangements

To determine the dynamics and possible equilibrium spot configurations for N  >  2 when 
E 1( )= O , f, and ν are given, we performed numerical simulations of the DAE system (9) and 
(5) for both pre-specified and randomly generated initial conditions for the spot locations. In 
the simulations in this section we used f  =  0.5 and 0.02ε = . It is important to emphasize that 
for any pattern for which the spot strengths have a common value, it follows from (9) and (5) 
that the steady-state spatial configurations of spots are independent of E, f, and ν. In this sense, 
this restricted class of common spot-strength equilibria are universal for the Brusselator, and 
for other RD systems such as the Schnakenberg model. The corresponding similar DAE 
dynamics for the Schnakenberg model is given in (D.5a) of appendix D.

To generate a set of N initial points that are uniformly distributed with respect to the surface 
area on the sphere, we let hφ and hθ be uniformly distributed random variables in (0, 1) and 
define spherical coordinates h2φ π= φ and hcos 2 11( )θ = −θ− . For the initial set of N points, 
Newton’s method was used to solve (5) for the initial spot strengths, where the initial guess 
for the iteration was taken to be the two-term asymptotics (63). If the Newton iteration scheme 
failed to converge, indicating that no quasi-equilibrium exists for the initial configuration of 
spots, a new randomly generated initial configuration was generated. The DAE dynamics was 
then implemented by using an adaptive time-step ODE solver coupled to a Newton iteration 
scheme to compute the spot strengths.
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Our simulations of fifty randomly generated initial spot configurations for the case N  =  3 
suggests that a stable equilibrium configuration consists of three equally spaced spots that 
lie on a plane through the center of the sphere. The eventual colinearity and equal spacing 
between the three spot locations as time increases was ascertained by monitoring the distances 
between any two spots together with the triple product x x x1 2 3( )⋅ ×  at each time step. As the 
slow time σ increased, the spots became equally spaced and the triple product tended to zero. 
By using lemma 5, this co-planar steady-state three-spot configuration can be mapped by an 
orthogonal matrix to the standard reference configuration of three equally spaced spots on the 
equator, i.e. x j jcos 2 /3 , sin 2 /3, 0j

T( ( ) ( ) )π π=  for j  =  0, 1, 2. Such a standard pattern, for which 
(58) holds and S e2E /3= , can be readily verified analytically to be a steady-state solution for 
the dynamics (9).

For N  =  4, our simulations of fifty randomly generated initial spot configurations for the 
DAE dynamics suggests that the stable equilibrium configuration generically consists of four 
spots centered at the vertices of a regular tetrahedron. This was determined by showing that as 
time increases, the distance between any two spots tended to the common value 8/3 and that 
the volume Vσ of the tetrahedron formed by the spot locations, given by

x x x x x x
V

6
,1 4 2 4 3 4( ) [( ) ( )]

=
| − ⋅ − × − |

σ

tended to the volume 8 3 /27 of a regular tetrahedron. Although our random simulations sug-
gest that a regular tetrahedron has a large basin of attraction for the dynamics of the DAE 
system (9) and (5), it cannot preclude the possibility of other stable steady-state configurations 
with much smaller basins of attraction.

For any N 2⩾ , a ring solution, consisting of N equally spaced spots on an equator of the 
sphere, is a steady-state solution to the DAE system (9) and (5). For N  =  3, our numerical 
computations suggest that such a ring solution is orbitally stable to small random perturba-
tions in the spot locations in the sense that as time increases the perturbed spot locations will 
become colinear on a nearby (tilted) ring. However, for N 4⩾ , our numerical simulations show 
that a ring solution is dynamically unstable to small arbitrary perturbations in the spot loca-
tions on the ring. For N  =  4, E 8= , f  =  0.5, and 0.02ε = , in figure 7 we show that four spots 

Figure 7.  For f  =  0.5, =E 8, ε = 0.02, four equally spaced spots on a ring are perturbed 
by a 1% random perturbation in their locations. At σ = 6 the spots have moved off of the 
ring, and at σ = 10 the spots become centered at the vertices of a regular tetrahedron. 
The top subplots show the patterns in the ( )φ θ,  plane.

0◦ 180◦ 360◦0◦

90◦

180◦

(a) σ = 0

0◦ 180◦ 360◦0◦
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(b) σ = 6
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(c) σ = 10
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on a ring with an initial random perturbation of 1% in the spot locations will eventually tend 
to a regular tetrahedron as time increases.

For N  =  5, N  =  6, and N  =  7, our numerical simulations employing fifty randomly gener-
ated initial spot configurations for the DAE dynamics suggests that the stable equilibrium 
configuration generically consists of a pair of antipodal spots, while the remaining N  −  2 
spots are equally spaced on the mid-plane between these two spots. We refer to such patterns 
as (N  −  2)  +  2 patterns. The diagnostics used to form this conclusion are as follows. For each 
initial condition, we solved the DAE dynamics until a steady-state was reached. From this 
steady-state configuration two antipodal spots, labelled by x1 and x x2 1= − , were identified 
from a dot product. We arbitrarily chose x1 to map to 0, 0, 1 T

1 ( )ξ = . We then chose any one of 
the other N  −  2 spots locations, such as x3, and map x3 to 1, 0, 0 T

3 ( )ξ = . We define R to be the 
orthogonal matrix where the first row is x3, the second row is x x x x/1 3 1 3( )× | × |, and then third 
row is x1. With this choice for the matrix R, we found that the computed steady-state points xj, 
for j N1 ,= … , can be mapped to the standard reference configuration for an (N  −  2)  +  2 pat-
tern consisting of spots at (0, 0, 1) and (0, 0, −1), and N  −  2 spots equally spaced on the equa-
tor /2θ π=  with one of these spots at (1, 0, 0)T. This mapping technique was fully automated 
and allowed us to identify the final steady-state pattern computed from the DAE dynamics. 
For N  =  7, the numerical results shown in figure 8 illustrate the formation of the (N  −  2)  +  2 
pattern from a random initial condition for the parameter set f  =  0.5, E 14= , and 0.02ε = . 
The (N  −  2)  +  2 structure is evident from figure 8(d), which is close to the steady-state pat-
tern. When N  =  6, the (N  −  2)  +  2 pattern is simply an octahedron.

For an (N  −  2)  +  2 pattern, the two anitipodal spots have strength Sp while the remaining 
(N  −  2) equally-spaced spots on the equator have strength Sc. By partitioning the Green’s 
matrix in (5) into a cyclic N N2 2( ) ( )− × −  sub-block consisting of spot interactions on the 
ring, we can derive after some algebra from (5) that Sc satisfies the scalar nonlinear algebraic 
equation

S
N

S N
N

N
S S
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S
N
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2
log 2

2

2
log 2
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−
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(76)

For all of our numerical DAE computations for N  =  5, 6, 7, we verified that the spot strengths 
for the steady-state pattern satisfied (76).

Our numerical results show that the (N  −  2)  +  2 pattern for N 8⩾  is unstable. This is illus-
trated for N  =  8 in figure  9 where we took an initial 1% random perturbation in the spot 
locations. However, unlike the cases for N  <  8 where the (N  −  2)  +  2 patterns were visually 
discernible, the final steady-state pattern in figure 9(d) is no longer clear. For a general steady-
state configuration of N points, we now propose an algorithm to rotate the sphere so that the 
symmetries are apparent.

Let x y, 0( )∆ >  be the great circle distance along the geodesic connecting the two points, x 
and y, on the sphere. To each point, x, on the sphere, we compute

x x x x x, antipodal of , .
i

N

i i
1

( ) [ ( ) (     ) ]∑= ∆ +∆α α

=

D� (77)

That is, x( )D  is a measure of the closeness of x and its antipodal point to the set of spots. The value 
of 0α>  is a weighting parameter designed to penalize distance to the spots (we choose 0.5α = ). 
Let x∗ be an extremum (either local or global) of D on the sphere. We observe that by rotating 
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the sphere so that the new north and south poles are oriented along x∗ and its antipodal point, the 
symmetry patterns often become clear in the new ,( ¯ ¯)θ φ  plane. This is shown in figure 10 for the 
spot pattern in figure 9(d), which is now recognized as forming what we refer to as a 45° ‘twisted 
cuboid’: two parallel rings containing four equally-spaced spots, with the rings symmetrically 
placed above and below the equator, and with the spots phase shifted by 45φ̄ = ° between each 
ring. However, since the distance between the two parallel planes is not the same as the minimum 
distance between any two neighbouring spots on the same ring, the untwisted shape does not 
form a true cube. Our computations yield that the perpendicular distance between the two planes 
is 1.129 24≈  as compared to a minimum distance of 1.1672≈  between neighboring spots on 
the same ring. The ratio of this minimum to perpendicular distance is approximately 0.967. This 
yields that the rings are at latitudes 55.6θ≈ ° and 124.4θ≈ ° (see the subplot in figure 10).

Further numerical simulations of randomly generated eight-spot patterns suggests that the 
stable equilibrium pattern is generically the 45° degree twisted cuboid described above. Our 
numerical results also show that an untwisted cuboid is unstable to small random perturbations, 
and that a cuboid with initial twist angle ω will tend to a 45° twisted cuboid as time increases.

Figure 8.  For f  =  0.5, =E 14, ε = 0.02., seven spots, randomly generated, tend to an 
(N  −  2)  +  2 pattern. The pattern with σ = 6 is near the steady-state. The top subplots 
show the patterns in the ( )φ θ,  plane.
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Figure 9.  For f  =  0.5, =E 16, and ε = 0.02. Eight spots in a standard (N  −  2)  +  2 
pattern undergo a 1% random perturbation at time σ = 0. The initial (N  −  2)  +  2 
pattern is found to be unstable. The pattern for σ = 25 is near the steady-state pattern. 
The top subplots display the patterns in the ( )φ θ,  plane.
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5.2.  A ring pattern with a polar spot: prediction of a triggered instability

Next, for N 3⩾  we consider an initial pattern with (N  −  1) spots equidistantly spaced on a 
ring of constant latitude 0( )θ  together with a polar spot centered at 0θ = . For this special 
(N  −  1)  +  1 pattern, we can reduce the DAE system (5) and (9) to a scalar ODE for the lati-
tude of the ring coupled to a single nonlinear algebraic equation for the common spot strength 
for the spots on the ring. For this type of pattern we will predict the occurrence of a dynami-
cally triggered spot-splitting instability.

In terms of spherical coordinates, we have for the N  −  1 spots on the ring at time 0σ =  that 
0 0j( ) ( )θ θ=  and j N0 2 1 / 1j( ) ( ) ( )φ π= − −  for j N1, , 1= … − . For the polar spot, we have 
0 0N( )θ = . From (8), it is readily shown that for all time, 0⩾σ

j N0 ; , 1, , 1 ; 0,j j j c N( ) ( ) ( ) ( ) ( )φ σ φ θ σ θ σ θ σ= = = … − =

where c( )θ σ , with 0 0c( ) ( )θ θ= , is the common latitude of the N  −  1 spots on the ring. For this 
pattern, the spot spot-strengths are S S S S, , ,c c N

T( )= … , where N S S1 2Ec N( )− + = .
The dynamics of the (N  −  1)  +  1 spot pattern is characterized in terms of an ODE for c( )θ σ  

coupled to a nonlinear algebraic equation for S Sc c c( )θ= . By partitioning the Green’s matrix 
in (5) into a cyclic N N1 1( ) ( )− × −  sub-block consisting of spot interactions on the ring, we 
readily obtain from (5) that Sc satisfies the scalar nonlinear algebraic equation

S NS S S S N L L2 1 2E 1 0,c c c N c N( ) [ ( ) ( ) ( ( ) )] ( )ν χ χ κ ν≡ + − + − − − + =T
�

(78a)

where S N S2E 1N c( )= − − . Here L L c( )θ=  is the common value x xL log j N= | − | for 
j N1, , 1= … − , and Nκ  is the eigenvalue of the N N1 1( ) ( )− × −  cyclic sub-block of G with 
corresponding N  −  1 dimensional eigenvector 1, , 1 T( )… . A calculation yields that

Figure 10.  (Left) The same as figure  9(d), but the shading on the sphere and the 
top ( )φ θ,  plane show values of ( )D x , with light and dark shading for small and large 
values, respectively. The two asterisks (global maxima) indicate a better location to 
place the polar axis of the sphere (marked by a cylinder). (Right) After an orthogonal 
transformation, R, the rotated sphere in the (new) ( ¯ ¯)φ θ, -plane shows two rings of four 
spots.
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x xL N Nlog 2 sin /2 , log log 1 2 log sin .c N
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j k

N

j k c
1

1
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−

�

(78b)

To determine the ODE for cθ , we set j cθ θ=  for j N1, , 1= … −  in (8) to obtain that

N
S

S

S

S

d

d
2 cot cot /2 , 0 0 ,c c

c
c

N

N
c c( )

( ) ( )
( ) ( ) ( )θ

σ
θ θ θ θ= − − − =

A A
� (79)

where S N S2E 1N c( )= − − . The DAE system for this pattern is to solve (79) together with the 
constraint S 0c( ) =T  of (5.2), which yields S Sc c c( )θ= . As a remark, if we set N  =  2 in (5.2) 
and (79) we obtain S S Ec N= = , and readily recover the two-spot dynamics of lemma 4.

Since S 0c( )<A  and S 0N( )<A , we observe from (79) that 0cθ >′  for 0 /2cθ π< < , but 
0cθ <′  as c →θ π−. As such, (79) will have a steady-state at some ceθ  satisfying /2 ceπ θ π< < .

In the left and right panels of figure 11 we plot the solutions Sc and SN to (5.2) as a function 
of cθ  for two different parameter sets. We observe that there is a minimum latitude, depending 
on E, N, and f, for which quasi-equilibria can exist, which yields a saddle-node bifurcation 
structure. In these figures, the upper (lower) branch of the Sc curve corresponds to the lower 
(upper) branch of the SN curve. The dashed portions of these curves are quasi-equilibria that 
are unstable on an 1( )O  time-scale since SN ( )ν= O  (see section 4). In these figures the unique 
steady-state, ceθ , of the slow dynamics (79) is indicated by a star ( )� , while the spot self-
replication threshold is marked by a circle •( ).

The implication of these results for spot dynamics is as follows. For any initial value 
0c ce( )θ θ< , (79) yields 0c( )θ σ >′ , so that c( )θ σ  increases monotonically towards ceθ . In this case, Sc 

decreases while SN increases along the solid curves in figure 11 until the steady-state is reached. 
Alternatively, if 0c ce( )θ θ> , then Sc increases and SN decreases along the solid curves in figure 11 
until reaching the steady-state. If at 0σ =  or at any 0σ>  either Sc or SN exceeds the threshold 

Figure 11.  Plot of the common spot strength Sc for the N  −  1 spots on a ring (tight 
C-shaped curve) and the spot strength SN for the polar spot (open C-shaped curve) 
versus the ring latitude θc (in degrees), as computed from (5.2). The upper (lower) 
branch of the Sc curve corresponds to the lower (upper) branch of the SN curve. The 
dashed portions of these curves represent quasi-equilibria that are unstable on an 

( )O 1  time-scale since ( )ν= OSN  (see section 4). The unique steady-state of the slow 
dynamics (79) is indicated by �. Left panel: f  =  0.5, ε = 0.02, =E 11, and N  =  4. Right 
panel: f  =  0.6, ε = 0.02, =E 14.5 and N  =  7. In these panels, the spot self-replication 
thresholds ( )Σ ≈0.5 5.962  and ( )Σ ≈0.6 4.412  are indicated by •. From the right panel, 
for ( )θ = °0 80c , we predict that the polar spot with spot strength SN will undergo a 
dynamically triggered spot self-replication instability before reaching the steady-state.
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f2( )Σ , we predict that a spot self-replication event will occur. If the threshold is exceeded only 
at a later time 0σ> , we refer to this instability as a dynamically triggered instability.

The plots in figure  11 reveal several possible dynamical behaviors. First, consider 
the parameter set f  =  0.5, N  =  4, E 11= , and 0.02ε = , corresponding to the left panel of 
figure 11. For an initial angle satisfying 68 0 121c( )θ° < < °, we observe that no spot-splitting 
can occur and 109.3c ce→θ θ ≈ ° as →σ ∞. For 0 68c( )θ < °, but above the saddle-node value, 
we have S 0.5c 2( )>Σ  and so predict that the 3 spots on the ring will undergo a spot self-repli-
cation process beginning at 0σ = . Alternatively, for 0 121c( )θ > °, we predict that the polar spot 
will undergo splitting starting at 0σ = . For the parameter set f  =  0.6, N  =  7, E 14.5= , and 

0.02ε = , corresponding to the right panel of figure 11, we observe that a dynamically trig-
gered instability can occur for the polar spot. To illustrate this, suppose that 0 80c( )θ = °. Then, 
from the right panel of figure 11, it follows that SN will exceed the spot-splitting threshold 

0.6 4.412( )Σ ≈  before reaching the steady-state value. Thus, we predict that the slow dynamics 
will trigger, at some later time, a spot self-replication event for the polar spot.

6.  Discussion

Asymptotic analysis has been used to derive a DAE system (5) and (9) characterizing the slow 
dynamics of localized spot solutions for the Brusselator on the sphere. When the quasi-equi-
librium spot solution is linearly stable to 1( )O  time-scale instabilities, the system describes 
the motions of a collection of N spots on a long time-interval of order 2( )ε−O . Numerical 
simulations of the DAE system with random initial spot locations has identified stable spatial 
configurations with large basins of attraction for equilibrium spots with N2 8⩽ ⩽ . For the case 
N  =  8, such a stable spot pattern is a 45° twisted cuboid, consisting of four equally spaced 
spots on two parallel rings, with spots on the two rings phase-shifted by 45°, and where the 
rings are at the approximate latitudes 55.6° and 124.4°.

Although our results do not address the fundamental question of how many localized spots 
will form starting from a small random perturbation of the spatially homogeneous state, our 
stability results in section 4 can be used to give leading-order-in-ν bounds on the minimum 
and maximum number of spots in a stable steady-state pattern. To leading-order in ν, we 
showed in section 4 that stable spot patterns are those for which all individual spot strengths, 
Sj, tend to the common value Sc as 0→ν  (see (63)). Using this leading order estimate, the 
N-spot pattern is stable to spot self-replication when N is large enough so that S fc 2( )<Σ , 
Moreover, it is stable to a competition or overcrowding instability when N is small enough 
so that S dc 0ν>  (see section 4.6). This yields the following bounds in the limit 0→ν  on the 
number N of stable steady-state spots:

f
N

f

b f

2E 2E

1
.

2( ) ( )νΣ
< <

−� (80)

For the parameter set 0.075ε = , f  =  0.8, and E 4.0=  of figure 1, we use 0.8 2.282( )Σ ≈  to cal-
culate 3.51  <  N  <  10.36 from (80). The computed pattern in figure 1 had 6 spots. We remark 
that the bounds in (80) will be tighter, and hence more useful, for smaller values of f.

DAE systems for slow spot dynamics, similar to (5) and (9) for the Brusselator, can also 
be derived for other RD systems. For example, in appendix D, we present analogous results 
for the Schnakenberg model. The primary feature that is needed to apply the analysis herein 
is that the outer approximation for the quasi-static inhibitor concentration v (i.e. the long 
range solution component) must satisfy a linear elliptic problem on the sphere of the form 

x xv v A SS j
N

j j1 ( )κ δ∆ − = +∑ −= , for some 0⩾κ  and constant A.
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Finally, we compare our result for spot dynamics with the well-known results for the 
dynamics of a collection of point vortices centered at xi, for i N1, ,= … , on the sphere for 
Euler’s equations. For N such point vortices of strength iΓ, for i N1, ,= … , the ODE point 
vortex dynamics are (see [3, 25])

x
x x

x x
j N

1

2
, 1, , ,j

i
i j

N

i
i j

i j1
2∑π= Γ

×

| − |
= …′

=
≠

� (81)

subject to 0i
N

i1∑ Γ == . In terms of spherical coordinates, (81) for j N1, ,= …  becomes

t

d

d

1

4 1 cos
sin sin ,

j

i
i j

N
i

ij
i j i

1
( )∑

θ
π γ

θ φ φ= −
Γ

−
−

=
≠

� (82a)

t
sin

d

d

1

4 1 cos
sin cos cos sin cos ,j

j

i
i j

N
i

ij
j i j i j i

1
[ ( )]∑θ

φ

π γ
θ θ θ θ φ φ=

Γ
−

− −
=
≠

� (82b)

where ijγ  is the angle between xi and xj. In contrast to our result for slow spot dynamics, 
the ODE system (82) is Hamiltonian. This structure has been used for analyzing (82) for 
specific problems such as, the stability of a latitudinal ring of vortices (see [2]), the integrable 
3-vortex problem (see [15]), and characterizing relative equilibria of point vortex configura-
tions (see [26]).

Our asymptotic result (8) and (9) for slow spot dynamics differs in at least two key aspects 
from the point vortex dynamics of (81) and (82). Firstly, in (8) and (9), the spot strengths Sj 
are not pre-specified, but instead are coupled to the slow dynamics by the nonlinear algebraic 
constraint (5). This leads to an ODE-DAE system for slow spot dynamics. In contrast, for the 
point vortex problem, the vortex strengths iΓ are arbitrary, subject only to the constraint that 

0i
N

i1∑ Γ == . Secondly, the results in (8) and (9) are asymptotically valid only when the quasi-
equilibrium profile in (4) is linearly stable to 1( )O  time-scale instabilities. One such instability 
leads to the triggering of a nonlinear spot self-replication event, and this instability occurs 
whenever the local spot strength Sj exceeds a threshold f2 2( )Σ = Σ  (see [32]). A discussion 
of these instabilities and their implications on slow spot dynamics was discussed in section 4. 
There is no comparable phenomena for the point vortex problem.

6.1.  Open problems

We now discuss several possible directions that warrant further investigation.

6.1.1.  Equilibria and the Green’s matrix.  One central issue concerns the Green’s matrix, G, 
appearing in the nonlinear algebraic system (5). When the spots are distributed in such a way 
that e is an eigenvector of G, we have been able to expose the bifurcation structure of the solu-
tions for the spot strengths (see section 4.2). For this case, there is a solution to (5) where the 
spots have a common spot strength, and the number of distinct bifurcation points (in E) from 
this symmetric solution branch in the E 1/2( )ν= O  regime is the number of distinct eigenval-
ues of G in the subspace orthogonal to e. Although it is easy to verify that e is an eigenvalue 
of G for some simple spatial arrangements of spot patterns such as, equally-spaced spots on 
a ring of constant latitude, spots centered at the vertices of any platonic solid (see table 1 of 
[32]), or eight spots forming a twisted cuboid, it is an open problem to numerically classify all 
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spot configurations for which e is an eigenvector of G. For larger values of N, it was shown in 
table 2 of [32] that the elliptic Fekete points, defined as the point set that globally minimizes 
the discrete logarithmic energy x xV logi j i j≡−∑∑ | − |≠  with x 1i| | = , generates a Green’s 
matrix G for which e, as measured in the L2 norm, is rather close to an eigenvalue of G. We 
remark that if we set S Sj c=  for j N1, ,= …  in (9), then any stable steady-state solution of 
(9) must correspond to a local minimum of the discrete logarithmic energy. By calculating the 
discrete logarithmic energy of our 45° twisted cuboid, and then examining table 1 of [33], we 
have verified that our 8-spot twisted cuboid is indeed an elliptic Fekete point set and not just 
a local minimum of the discrete logarithmic energy. These observations suggest that it would 
be interesting to carefully examine the relation between elliptic Fekete points and equilibria 
of (5) and (9).

We further remark that when e is an eigenvector of G, the steady-state spot locations for an 
N-spot pattern, having spots of a common spot strength, are independent of the parameters 
in the RD model. A similar universality result holds for common spot strength patterns in the 
Schnakenberg model (see (5) of appendix D).

Another open problem is to use numerical bifurcation software to path-follow the small 
amplitude weakly nonlinear spatial patterns, which emerge from a Turing bifurcation when 

O 1( )=ε , into the regime 1�ε  of localized spot patterns studied in this paper. In particular, 
as ε is varied, do our localized spot patterns arise from subcritical bifurcations of the weakly 
nonlinear amplitude equations?

6.1.2.  Bifurcations and imperfection-sensitivity.  However, when e is not an eigenvalue of G, 
our numerical investigation for N  =  3 of the solution set to the constraint (5), has shown the 
qualitatively new result that the leading-order-in-ν bifurcation diagram in the E 1/2( )ν= O  
regime is imperfection sensitive to small perturbations resulting from higher order in ν terms. 
This imperfection sensitivity of the bifurcation structure of (5) when e is not an eigenvalue 
of G is a qualitatively new result in the construction of spot-type patterns. Previous asymp-
totic constructions of asymmetric spot-type patterns for other RD models such as the Gierer-
Meinhardt, Gray-Scott, or Schnakenberg models in planar 2D domains (see [41] for a survey), 
were based on a leading-order-in-ν theory, and hence the effect of higher order in ν terms were 
not considered. For ν small and any N  >  2, it would be interesting to provide an asymptotic 
analysis of imperfection sensitivity for these other RD models.

An intriguing question concerns identifying and then classifying the steady-state spot con-
figurations of the DAE system (5) and (9), as was studied in section 5. Although the patterns 
for N 8⩽  were relatively easy to recognize, it would be interesting to devise a numerical algo-
rithm based on ideas from group theory to classify into symmetry groups any stable steady-
state spot patterns on the sphere when N  >  8. We note furthermore that since the DAE system 
does not appear to be a gradient flow, it would also be interesting to explore whether it can 
admit irregular dynamics for some special initial conditions, or for larger values of N than we 
have examined. An additional open problem is to analytically perform a stability analysis of 
steady-state solutions of the DAE system (5) and (9).

6.1.3.  Comparisons with full numerical simulations.  In order to benchmark the range of validity 
in ε of the asymptotic slow-spot dynamics, we would require full numerical simulations of the 
Brusselator model (1) over long time intervals. Indeed, for the simpler case of the Gray-Scott 
model posed on a rectangular domain, results from a related DAE system were favorably com-
pared in [6] with full numerical results computed by a finite-element software package. However, 
the analogous study for the sphere and for general curved surfaces remains an open question.
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Currently, our method for computing the patterns shown in figure 1 relies on an explicit 
time-stepping scheme using the closest-point method (see references in [32]). However, such 
explicit schemes are inadequate for obtaining the accuracy and time-scales necessary to valid
ate the 0→ε  limit, and one would require the development of an implicit numerical solver. 
For example, one possible numerical approach would be to use a spectral method, tailored for 
the sphere, coupled to implicit-explicit (IMEX) scheme for the time-stepping. The develop-
ment of such a code, which could be used for comparisons with the DAE system, is beyond 
the scope of this paper, but we highlight this task as an important problem for future work.

Acknowledgments

PHT thanks Lincoln College, Oxford and the Zilkha Trust for generous funding. MJW 
gratefully acknowledges grant support from NSERC. We are grateful to Prof P Matthews 
(Nottingham U) regarding possible stable spot patterns for N  =  8 spots, Prof S Boatto (Rio 
Federal U) for discussions about the point-vortex problem, and Prof C MacDonald (Oxford, 
UBC) for use of the closest point software.

Appendix A.  Non-dimensionalization of the Brusselator

The standard form for the Brusselator RD model is (see [30])

U U E B U U V V D V BU U V1 , ,T S T S0
2 2 2ˆ ( )ε∂ = ∆ + − + + ∂ = ∆ + −� (A.1)

where D L/U0
2 2ε ≡ , D D L/V

2≡ , and L is the radius of the sphere. Here S∆  is the surface 
Laplacian for the unit sphere. We consider the singularly perturbed limit 00 →ε  for which 
D D L/ 1v

2 ( )= = O  as 00 →ε . In [32] it was shown that localized spot patterns for (A.1), char-
acterized by localized regions where U 0

1( )ε= −O , exist when E 0ˆ ( )ε= O . We scale (A.1) so 
that the amplitude of the spots is 1( )O  as 00 →ε . In terms of the new variables t, u, and v, 
defined by

T
t
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B D
u V

B

B D
v

1
,

1
,

1
,

0
0

( )
( )ε

ε=
+

=
+

=
+

we get that (A.1) reduces to (1), where f, τ, ε, and E 1( )= O  in (1) are defined by

B

B
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B

B
E

E

B D1
,

1
,

1
,

1
.0

0

( ) ˆ

( )
ε

ε
τ

ε
≡

+
≡

+
≡

+
≡

+
�

(A.2)

Our non-dimensionalization of the Brusselator so that v has unit diffusivity is slightly differ-
ent than that used in [32]. However, the system studied in [32] can be readily mapped to (1).

Appendix B.  Further details of the leading-order inner solution

Given some value of Sj and f, we solve (18) numerically on the truncated domain R0,[ ]ρ∈  , 
with R 1� , where we impose the approximate conditions Uj0(R)  =  0 and V R S R/j j0( ) =′ . This 
yields solutions Uj0 and Vj0, and we approximate χ by V R S Rlogj j0( )χ≈ − . In figure B1 we 
plot Uj0 for different values of Sj when f  =  0.3 and R  =  20. In the left panel of figure B2 we 
plot χ versus Sj for f  =  0.3. For S 0j → , the asymptotic behavior of χ, as derived in [32], is
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( ) →

( )
∫

χ

ρ ρ

∼ + +
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−

=
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(B.1)

where w 0( )ρ >  is defined to be the unique solution of w w w 02∆ − + =ρ  with w 0→  as 
→ρ ∞. In the right panel of figure 13 we plot χ versus Sj for a few f values.

Appendix C.  Proofs of lemmas

C.1.  Proof to lemma 1 (tangent plane approximation)

We begin by letting x f f fcos sin , sin sin , cos , ,T T
1 2 3( ) ( )φ θ φ θ θ≡ ≡ , where f f ,i i ( )φ θ=  for 

i  =  1, 2, 3. By retaining the quadratic terms in the Taylor expansion of x as x xj→ , we readily 
derive that

Figure B1.  ( )ρ=U Uj0 0  for f  =  0.3 and Sj  =  {1, 2, 4, 8, 15}. As Sj increases (in the 
direction of the arrow), Uj0 develops a volcano profile.

Figure B2.  Left: χ versus Sj for f  =  0.3 (heavy solid curve). The dashed curve is the 
asymptotic result b f S f1 / j

2( ) ( )χ∼ −  as →S 0j  with ≈b 4.934. Right: χ versus Sj for 
f  =  0.4, f  =  0.5, f  =  0.6, and f  =  0.7, as shown. The thin vertical lines in these figures is 
the spot self-replication threshold ( )= ΣS fj 2  (see (44)). For ( )>ΣS fj 2 , the quasi-
equilibrium spot solution is linearly unstable on an ( )O 1  time-scale. In this figure, the 
values of f increase in the direction of the arrow.
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x x J s r
2

,j j

2

ε
ε

− ∼ + +�� (C.1a)

where Jj is defined in (12b) and r r r r, , T
1 2 3( )≡  with components defined by
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The leading term in (C.1a) gives the first expression in (12a). To obtain the second relation 

in (12a), we calculate x x s J J s s J rj
T

j
T

j
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j
T2 2( )ε ε| − | ∼ + . Since J J Ij
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� (C.1c)

Finally, we use (12b) for Jj
T and we evaluate the required partial derivatives in (C.1b) to calcu-

late r. After some lengthy, but straightforward, algebra we get that s J r s s cotT
j
T

j1 2
2 θ= . Upon 

substituting this result into (C.1c) we obtain the second result in (12a).

C.2.  Proof to lemma 2 (static component of first-order inner solution)

The proof is by a direct verification. We set

U U UAs Bs s ,s s1 2
2

0 1 2 01 2= ∂ + ∂� (C.2)

for some constants A and B. For this form of U1 we readily calculate that

U U U

U U U

As Bs s

s A B Bs A4 2 2 2 .
s s s s s s s s

s s s s s

, 1 2
2

, 0 1 2 , 0

2 0 1 0 0

1 2 1 1 2 2 1 2

1 2 2 2 1

( ) ( )
( )

( ) ( ) ( )∆ = ∂ ∆ + ∂ ∆
+ + ∂ + ∂ + ∂

In this expression, we use U Us s s s, 0 01 1 2 1( )∂ ∆ = − ∂M  and U Us s s s, 0 02 1 2 2( )∂ ∆ = − ∂M , as obtained 
from differentiating (31), to obtain

U U U U U UAs Bs s s A B Bs A4 2 2 2 .s s s s s s s s s, 1 2
2

0 1 2 0 2 0 1 0 01 2 1 2 1 2 2 2 1( )( )∆ = − ∂ − ∂ + + ∂ + ∂ + ∂M M

For U1 of the form (C.2) we then calculate that U U UAs M Bs ss s1 2
2

0 1 2 01 2= ∂ + ∂M M . Upon add-
ing these two expressions, we obtain

U U U U U Us A B Bs A2 2 2 2 .s s s s s s s1 , 1 1 2 0 1 0 01 2 1 2 2 2 1( )( )L ≡∆ + = + ∂ + ∂ + ∂M

The right hand-side of this expression agrees with that in (32a) if we choose A2 cot jθ= −  
and B cot jθ= . Finally, we calculate the far-field behavior of V1 using (C.2). This yields 
V S s s A B S s s/ cot / 2j j j1 1 2

2 2
1 2

2 2( ) ( )ρ θ ρ∼ + =  as →ρ ∞, which agrees with (32b).

C.3.  Proof to lemma 3 (diagonal entries of B)

We shall derive (55) and establish (56). First, note that as S 0j → , the solution to the core prob-
lem (18) is given by (principal result 4.1 of [32])

U
S w

fv
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v

b f

f
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j
j

j
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0 2˜
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� (C.3)
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where w 0( )ρ >  is the unique solution to w w w 02∆ − + =ρ  with w 0( )∞ = , and 

b w d
0

2∫ ρ ρ≡
∞

. In (45), we then expand jψ , Nj and Bj for S 0j →  as

N S N S B S B S S, , .j j j j j j j j j j j
2 2 2 2 2( ˆ ( )) ( ˆ ( )) ˆ ( )ψ ψ= + = + = +− −O O O� (C.4)

Upon substituting (C.3) and (C.4) into (45), and collecting powers of Sj, we obtain that
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(C.5b)

By integrating the equations for Njˆ  and for jψ̂  over 0 ρ< <∞, we obtain that
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Upon eliminating dj0
ˆ∫ ψ ρ ρ

∞
 between these two expressions we obtain that
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Then, in the class of radially symmetric solutions, we write the solution, jψ̂ , to (C.5a) as

B

fv
L w L w, where 2 .j

j

0
2 0

1 2
0

ˆ
ˆ

˜
( )ψ λ= − − Φ≡∆ Φ− Φ+ Φρ

−� (C.8)

Finally, upon substituting (C.8) into (C.7) and solving for Bjˆ , we readily obtain (55) of lemma 3.
Next, we establish (56) for ( )λK  as defined in (55b). The self-adjoint problem L0 σΦ = Φ has a 

unique real eigenvalue 00σ >  with eigenfunction 00Φ > , which we normalize as d 1
0 0

2∫ ρ ρΦ =
∞

. 

Since L w w0
1 2 =− , we get b b b0 /2 /2( ) = − =K . The monotonicity result 0( )λ >′K  in (56a) 

for the segment 0 0λ σ< <  of the real axis was proved in Appendix C of [32].
To establish the asymptotics (56b) as 0→λ σ−, we introduce 0δ>  small and set 0λ σ δ= − . 

We then expand the solution q to L q w0
2( )λ− =  as q C q1

0 1δ= Φ + +− �, for some constant 
C to be found. We obtain that q1 satisfies L q w C0 0 1

2
0( )σ− = − Φ , which has a solution only 

if C w d
0

2
0∫ ρ ρ= Φ

∞
. Thus, for 1δ� , we have L w C0

1 2 1
0( )λ δ− ∼ Φ− − . Upon substituting this 

expression into (55b) we obtain the asymptotics (56b) when 0λ σ δ= −  with 1δ� . Finally, 
to establish (56c), we use B S S, 0j j j( ) ( )χ= ′  at each f  >  0 and the asymptotics for Sj( )χ  in (B.1) 
as S 0j → .

C.4.  Proof of lemma 4 (explicit two-spot solution)

For any two-spot configuration G satisfies (58), so that from (59) we have S S E1 2= = . This 
is the unique solution to (5) with S 1j ( )= O  as 0→ν . Assume that E f2( )<Σ , so that the DAE 
dynamics (9) is valid. We use (9) to calculate
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Since E 0( )<A , this ODE is E Ed /d 2 cot /2 /1,2 1,2( ) ( )γ σ γ= | |A , with solution (75).

C.5.  Proof of lemma 5 (invariance under orthogonal transformations)

The Green’s matrix G in the constraint (5) is invariant under R since IT =R R  implies 
ξ ξ| − | = | − |x xj i j i  for i j≠ . Then, multiply (9) by R and use IT =R R  to get
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The result follows by setting xj jξ = R  and using ξ ξ| − | = | − |x xj i j i  for any i j≠ .

Appendix D.  Slow spot dynamics for the Schnakenberg model

Results similar to those in principal results 1 and 2 can be derived for other RD systems. Here 
we focus on the reduced Schnakenberg model formulated in terms of a parameter a  >  0 as

u

t
u u vu

v

t
v a u v, .S S

2 2 2 2ε τ ε
∂
∂
= ∆ − +

∂
∂
= ∆ + − −� (D.1)

In place of (18), the leading-order radially symmetric inner problem near the j th spot is 
given by solving, for 0 ρ< <∞, the coupled system

U U U V V U V0, 0,j j j j j j j0 0 0
2

0 0 0
2

0∆ − + = ∆ − =ρ ρ� (D.2a)

U V U V S o0 0 0 ; 0, log 1 , as .j j j j j0 0 0 0( ) ( ) →   ( )   →ρ χ ρ= = ∼ + + ∞′ ′
�

(D.2b)

The numerically computed function Sj( )χ χ=  is plotted in the left panel of figure D1.
The other function required for the slow dynamics, and which depends on the specific form 

of the nonlinear kinetics, is jA  defined in (41). In computing jA  from (41), Uj0 is now given by 
the solution to (D.2a) and P1( )ρ  is the solution to (37) subject to P P, 0, 1/T T

1 2( ) ( )ρ∼  as →ρ ∞, 
where the matrix jM  in (37) is now given in terms of the solution to (D.2a) by

U V U

U V U

1 2

2
.j

j j j

j j j

0 0 0
2

0 0 0
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟≡

− +

− −
M� (D.3)

The computed function jA  versus Sj for the Schnakenberg model is plotted in figure D1. In 
terms of these model-specific functions Sj( )χ  and jA , the result for slow spot dynamics is as 
follows:

Principal Result 5 (Schnakenberg model: slow spot dynamics).  Let 0→ε . Provided 
that there are no 1( )O  time-scale instabilities of the quasi-equilibrium spot pattern, the 
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slow dynamics of the spot pattern on the unit sphere for (D.1) is characterized by the quasi-
equilibrium solution

x x
xu U v S L

v
, ,

i

N

i
i

i

N

i i
c

unif
1

,0 unif
1

( )
⎛
⎝
⎜

⎞
⎠
⎟∑ ∑ε ν

∼
| − |

∼ +
= =

� (D.4)

where the time-dependent spot locations xj( )σ  on the slow time-scale σ, with t2σ ε= , satisfy

x x
x x

x x
S

j NI
d

d

2
, , 1, , ,

j

j
j

i
i j

N
i i

i j
j j j

T

1
2

( )∑σ
= −

| − |
≡ = …

=
≠

A
Q Q� (D.5a)

where Sj for j N1, ,= … , and the constant vc in (D.4), are coupled to the spot locations and the 
parameter a in (D.1) by the N-dimensional nonlinear algebraic system

S S S e
a

N
I I I 0

2
,0 0( ) [ ( ) ] ( ) ( )χν ν≡ − − + − − =N E G E� (D.5b)

with e S e Sv aN N2c
T T1 1( ( ) )χν= + −− − G . In (D.4) and (D.5b), x x xL logi i( )≡ | − |, while the 

matrices G, 0E , and the vectors χ, e are as defined previously in principal result 1.

In [16] it was shown that the j th spot is linearly unstable on an 1( )O  time-scale to locally 
non-radially symmetric perturbations near xj when S 4.3j 2>Σ ≈ . This linear instability was 
found in [16] to lead to a nonlinear spot self-replication event. From figure D1, we have 0j<A  
on S0 j 2< <Σ , so that the slow dynamics of spots is repulsive. We emphasize that the DAE 
system (D.5a) is remarkably similar in form to that for the Brusselator model in principal 
results 1–2.
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