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We present a mathematical model and corresponding series of microfluidic experiments
examining the flow of a viscous fluid past an elastic fibre in a three-dimensional
channel. The fibre’s axis lies perpendicular to the direction of flow and its base
is clamped to one wall of the channel; the sidewalls of the channel are close to
the fibre, confining the flow. Experiments show that there is a linear relationship
between deflection and flow rate for highly confined fibres at low flow rates, which
inspires an asymptotic treatment of the problem in this regime. The three-dimensional
problem is reduced to a two-dimensional model, consisting of Hele-Shaw flow past a
barrier, with boundary conditions at the barrier that allow for the effects of flexibility
and three-dimensional leakage. The analysis yields insight into the competing effects
of flexion and leakage, and an analytical solution is derived for the leading-order
pressure field corresponding to a slit that partially blocks a two-dimensional channel.
The predictions of our model show favourable agreement with experimental results,
allowing measurement of the fibre’s elasticity and the flow rate in the channel.
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1. Introduction
An anchored elastic fibre will bend when held perpendicular to the flow of a viscous

fluid. The degree of bending varies with material properties of the fibre and the fluid,
the flow rate and the surrounding geometry. In particular, we consider a fibre that
is anchored in a rectangular channel, with the walls of the channel positioned near
the fibre and thereby confining the flow. We present experiments for this system and
demonstrate how the three-dimensional geometry can be reduced to a two-dimensional
model, and how quantities such as fibre deflection and velocity fields can be derived
with the use of asymptotic and numerical methods.
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The study of fluid–structure interactions has a rich history, although the majority of
research has focused on flows at high Reynolds numbers (cf. Paı̈doussis 2004). An
example giving recent insight into such problems is the work of Alben, Shelley &
Zhang (2002), which shows how the drag induced by an anchored deformable fibre
differs from the traditional drag induced by rigid objects. In contrast, a number of
papers study the dynamics of an elastic fibre submerged in a flow at low Reynolds
number (Stokes flow). The fibre can be, for example, freely flowing (Stockie & Green
1998; Joung, Phan-Thien & Fan 2001; Wandersman et al. 2010), experiencing a body
force (Cosentino Lagomarsino, Pagonabarraga & Lowe 2005), forced with a prescribed
end motion (Wiggins & Goldstein 1998; Yu, Lauga & Hosoi 2006; Qian, Powers &
Breuer 2008) or held with one end anchored (Autrusson et al. 2011; Pozrikidis 2011;
Guglielmini et al. 2012; Young, Downs & Jacobs 2012).

A complication not emphasized in the above low-Reynolds-number studies is the
effect of a confining geometry on the resultant flow fields, and the corresponding
influence on fibre deformation (e.g. Berthet 2012). In examples ranging from bacteria
motion (DiLuzio et al. 2005) to micro-pumps (Day & Stone 2000), confinement has
been shown to have a significant effect. Indeed, the recent work of Semin, Hulin &
Auradou (2009) focusses on how the drag on a fixed rigid cylinder varies depending
on the degree of geometrical confinement. Our goal then is to study the influence of
confinement on the dynamics of an elastic fibre in low-Reynolds-number flow.

Our study has practical implications, with many possible applications in the field of
microfluidics (cf. the reviews by Stone, Stroock & Ajdari 2004 and Squires & Quake
2005). Attia et al. (2009), for example, show how thin deformable structures with a
spring-like geometry, anchored in the centre of a microfluidic channel, can be used as
sensors to measure flow rate. In their study the deformation of the sensor is calibrated
experimentally against known flow rates, to obtain a relationship between deformation
and flow rate. Thin flexible structures are also prevalent in biology, with examples
including cilia and flagella, which are primary appendages for feeding and propulsion
for many types of cells (Lauga & Powers 2009). Our analysis could bring insight to
the dynamics of cell motility and feeding in confined flow. As an additional example,
Rusconi et al. (2010) report the growth of flexible fibre-like biofilm structures, which
originate from wall-anchored biofilms located near the corners of micro-channels.

We begin this paper by describing, in § 2, our microfluidic experiments that motivate
the study. The geometry, shown schematically in figure 1, is chosen to highlight the
effects of confinement on fibre bending, as well as potentially to offer a method
of flow measurement along the lines of Attia et al. (2009). In § 3, we propose a
mathematical model for the corresponding low-Reynolds-number flow, which focuses
on the particular case of weakly deflected fibres, when only a small amount of fluid
passes between the fibre and the laterally confining channel walls. This step allows
a reduction of the three-dimensional geometry to a two-dimensional model, which
is further studied using asymptotic analysis in § 4, as well as numerical methods in
§ 5. We offer a comparison to experimental results in § 6 and conclude in § 7 with a
summary of the implications of our analysis.

2. Experiment
The experimental geometry consists of a long rectangular channel of large aspect

ratio, with a rectangular fibre extending from one of the sidewalls as shown
schematically in figure 1. The fluid flows in the x-direction, the fibre extends in
the y-direction and the channel is thin in the z-direction. The fibre is flexible, both
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FIGURE 1. Schematic of a planform view of the channel geometry (left), and a cross-
sectional view down the axis of the fibre (right). In experiments the very tip of the fibre
is rounded; it is shown square in this schematic for clarity in defining the dimensions.

because of its slenderness and because it is made of a soft material. We pump a
Newtonian fluid through the channel at known flow rates and record the shape that the
fibre takes as in the inset of figure 2. Experiments are performed over a broad range of
flow rates, but in this work we focus on small deflections of the fibre.

2.1. Experimental methods
The rectangular microfluidic channel is made of polydimethylsiloxane (PDMS, General
Electric) and has a depth D = 66 µm and a height H = 400 µm (see figure 1). The
channels are approximately 3 cm long and are moulded on a silicone wafer using
standard soft-lithography techniques. The fabrication allows for features such as walls
and pillars that span the entire depth of the channel, but features such as the fibre,
which only partially block the depth, present a difficulty and necessitate a different
fabrication method.

We implement the technique of ‘stop-flow lithography’, as introduced by Dendukuri
et al. (2007), and succeed in making highly confined fibres that are anchored in
the channel. We follow the fibre polymerization methods of Berthet (2012), first
filling the channel with a photo-curable solution of 90 wt% polyethylene glycol
diacrylate, with average molecular weight 575 (PEGDA-575, Aldrich Chemistry) and
10 wt% 2-hydroxy-2-methylpropiophenone photo-initiator (Aldrich Chemistry). Great
care is taken in preparing the solution so as to eliminate irreproducibilities in the
polymerization process. A fresh solution is mixed before each experiment, nitrogen is
run through the solution for 30 min to purge dissolved oxygen, and then the solution is
degassed for 30 min to remove nitrogen bubbles. A photomask with the desired fibre
geometry is placed in the light path of the fluorescence lamp (X-Cite) on a microscope
(Zeiss) at 10× magnification, and the shutter is opened for 225 ms. This procedure
cures the unmasked portion of the solution in the channel. The exposure time was
determined to give the most accurate reproduction of the desired fibre geometry with
our specific set-up.

When the shutter is open, the entire depth of the channel not blocked by the
mask is exposed to ultraviolet light. The polymerization reaction can only occur away
from PDMS surfaces however, since the reaction is inhibited by dissolved oxygen
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FIGURE 2. Particle paths from a channel with fibre height h = 226 µm, fibre width w =
31 µm and fibre depth d = 34 µm. The channel has height H = 400 µm, depth D= 45 µm and
flow rate Q= 3 µL min−1. The inset displays phase contrast images of the same fibre without
tracer particles, for flow rates of Q = 0, 3, 8, 15 and 30 µL min−1 (left to right). The higher
flow rates are included here for illustrative purposes, and are not considered to be in the linear
regime of our model. Scale bars are 100 µm.

and PDMS is permeable to oxygen. Therefore, next to all surfaces there exists a thin
‘inhibition layer’ that cannot be polymerized (Dendukuri et al. 2008). The existence
of the inhibition layer allows us to create a fibre that partially blocks the channel
depth, but it also presents a difficulty in mounting the fibre because there is a similar
inhibition layer next to lateral walls. To overcome this issue, we polymerize the fibre
so that it attaches to a wall that is also polymerized from PEGDA. The wall, in turn, is
anchored with multiple PDMS posts and gives the fibre a clamped boundary condition
at its base (see Attia et al. (2009) for a similar example using one post).

We observe the inhibition layer to be approximately 5–6 µm, based on observations
that D − d ≈ 10–12 µm (accounting for an inhibition layer on both the top and
bottom surfaces), where D is the depth of the channel and d is the depth of
the fibre (see figure 1). The channel depth is measured on the silicon mould
using a mechanical profilometer (Dektak). The fibre depth is measured optically, by
polymerizing unanchored fibres in the channel, and applying flow so that they flip
to their side. The cross-section of the fibre is observed to be rectangular, but the
very tip is slightly rounded in the xy-plane as shown in the microscope images of
figure 2. In our experiments, the fibre width, w, varies from 22 to 34 µm, and the fibre
height, h, varies from 144 to 293 µm. A value for the Young’s modulus of a material
polymerized under these specific cross-linking conditions could not be found in the
literature (measurements under different cross-linking conditions can be found in the
work of Berthet (2012)). Thus, we use our model to extract the Young’s modulus as
discussed in § 6.

In our experiments, we pump a solution of 100 wt% PEGDA-575 through the
channels and measure the deflection of the tip of the fibre at varying flow rates. We
use this solution to guarantee that the polymerized fibre, which is a gel, does not swell,
and to avoid accidental polymerization that might occur if the photo-initiator were
included in the solution. The density of the solution is reported by the manufacturer
to be ρ = 1.12 g mL−1. The kinematic viscosity of the solution was measured with
a capillary viscometer (Schott) to be µ/ρ = 50 mm2 s−1, which agrees well with the
value provided by the manufacturer. The fluid is contained in a glass syringe (500 µL,
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FIGURE 3. (a) Fibre tip deflection, u(hy), versus flow rate, Q, for d = 56 µm, D = 66 µm,
H = 400 µm and varying values of w and h. (b) The same experiments with a greater range of
data plotted on logarithmic axes, which emphasize the linear trend at low flow rates.

SGE Analytical Science), and injected with a precision syringe pump (Cetoni) into
the microfluidic device. The fibres are imaged at a magnification of 20× (see the
inset of figure 2) with the same microscope used for polymerization and a digital
camera (PixeLINK) connected to a computer. The fibre deflects to a steady shape, u(y),
and we measure with ImageJ (NIH) the deflection at the tip, u(hy), where hy is the
y-coordinate of the centre of the fibre tip as in figure 1.

2.2. Observations
To gain qualitative insight into the velocity field in the channel, we seed the fluid
with 2 µm polystyrene particles (Duke Scientific) and observe the particle traces.
The suspension is pumped through the device using the same set-up as for the
deflection experiments, and the particles are imaged through the microscope with
high-speed videography (3000 images/sec, Photron Fastcam). The resulting images are
superimposed to obtain the pathlines shown in figure 2. Note that the particles are
visible through the entire depth of the channel, so the image that we see is a projection
of the pathlines in the z-direction. Some of the pathlines appear to pass through the
fibre, while others are bent around it. The particles that appear to pass through the
fibre actually flow in the thin gap above and below it, and their traces are faintly
visible as the white lines on the fibre perpendicular to its axis. The balance between
flow through the thin gaps above and below the fibre and flow deflected around the
fibre is a defining feature of the problem. The competing confinement, and hence
resistance, of flow in both directions determines this balance and influences the degree
of bending of the fibre.

The focus of our paper is predicting the fibre deflection, and figure 3 shows the
observed deflection versus imposed flow rate for a representative data set. A log–log
plot of the data reveals that at low flow rates the deflection of the fibre tip, u(hy), is
linearly proportional to the flow rate, Q. Although the current work focuses on this
deflection regime, experiments were done over a wide range of flow rates extending
far beyond the initial linear regime and the data is included here both for completeness
and to allow us to assess how far our linearized model is valid. At the flow rates
deemed to be in the linear regime (up to Q = 1.2 µL min−1), no deflection of the
channel was observed; indeed the theory of Gervais et al. (2006) predicts that the
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channel deformation in this flow regime is less than 1 %. The average Reynolds
number, ReD, calculated from the flow rate and channel depth, does not exceed 10−3

for flow rates in this regime.

3. A two-dimensional mathematical model
Before beginning we note that the full problem presented in figure 1 could be

solved for individual cases using a finite-element package or a boundary integral
approach. These solution methods could, in principle, capture high degrees of fibre
deflection and the corresponding three-dimensional flow fields. However, we choose to
use mainly analytical methods. Our solution technique fully encompasses the regime
of our experiments and allows general insight into related problems. We are able
to extract scalings and to obtain individual solutions through analytical and simple
numerical calculations.

3.1. Dimensional problem
In this section we reduce the three-dimensional geometry of figure 1 to a two-
dimensional flow approximation. To start with, we define the parameters of the
problem using figure 1 as a guide. The dimensions of the channel are given in
upper case, with height H and depth D. The volumetric flow rate is Q. For the fibre,
the dimensions are given in lower case, with undeflected height h, depth d and width
w. Note that h also corresponds to the total arclength of the deflected fibre, which is
assumed to be inextensible. The height of the deflected fibre, projected on the y-axis,
is given by hy.

We use an Euler–Bernoulli model of beam deflection in which the fibre is
approximated as being infinitely thin, with its deflection in the x-direction relative
to x = 0 given by u(y), where y ranges from 0 to hy. If the fibre is not doubled
over, the coordinate y uniquely defines a point along the fibre path. We also define
a local coordinate system along the fibre path, shown in the inset of figure 1, with
tangent s and normal n. For an undeflected fibre, the positive n-direction corresponds
to positive x and the positive s-direction corresponds to positive y. Note that the
curvilinear coordinate system is only used for derivatives; the absolute location of the
fibre is described in Cartesian coordinates in order to relate it to the pressure, p(x, y).
The fibre curvature, κ(y), is defined as positive in the positive n-direction.

In our analysis, the flow in the xy-plane is assumed to correspond to Hele-Shaw
flow, which requires that the channel is thin and that the reduced Reynolds number is
small,

D� H, (3.1a)
(D/H)2 ReD = (D/H)2(ρDv/µ)� 1. (3.1b)

From the Hele-Shaw approximation, the out-of-plane component of the velocity vz is
set to zero, while the depth-averaged velocities, vx and vy, satisfy Darcy’s law with p
as the pressure,

v= (vx, vy)=− D2

12µ
∇p. (3.2)

Since the flow is incompressible, ∇ ·v= 0, and we obtain the Laplace equation for the
pressure in the xy-plane

∇2p= 0, (3.3)
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with ∇2 = ∂xx + ∂yy. For the remainder of the paper, we shall always refer to depth-
averaged velocities and write v= v.

The velocity tends to a uniform value vx = Q/DH as |x| → ∞, far away from
the fibre. We integrate the momentum equation (3.2) to obtain a far-field boundary
condition on pressure,

p→
(
−12µvx

D2

)
x=

(
−12µQ

D3H

)
x (3.4)

as |x| → ∞. The boundaries at the base of the fibre and the opposite wall are
impermeable. Thus, to satisfy no flux at both surfaces we specify that

∂p

∂y
= 0 on y= 0, H. (3.5)

The pressure field is defined within an arbitrary constant, so without loss of generality
we set the pressure at the tip of the fibre, y= hy, to be zero,

p= 0 on x= u(hy) and y= hy, (3.6)

where the deflected fibre is given by x= u(y).
Since the fibre only partially blocks the channel depth, some fluid can flow through

the narrow gap above and below the fibre (see cross-section in the inset of figure 1
and the flow visualization shown in figure 2). Noting that the depth of the gap is
(D− d)/2 and that the width of the gap is the width of the fibre, w, we observe for the
parameters in the experiments that

1
2(D− d)� w, (3.7)

allowing us to use the lubrication approximation to determine the flow profile within
the gap. In addition, the depth of the channel, D, and the depth of gap, (D − d)/2,
satisfy the condition

1
2(D− d)� D, (3.8)

implying that the majority of the pressure drop occurs within the gap, since the
resistance to flow within the gap is much higher than the resistance to flow in the main
channel. This observation allows us to take the pressure on either side of the gap to
be approximately constant in z but varying along the fibre length, denoted by p±(y),
where the subscript refers to either the right- or left-hand side of the fibre, respectively.

Furthermore we require that the width of the fibre is much less than its length, or

w� h, (3.9)

because we approximate the fibre as an infinitely thin barrier with a certain
permeability when we solve for the flow in the xy-plane. Under this approximation,
the entering flux at one point on the fibre equals the exiting flux directly opposite
it. Leakage dynamics that are more complex cannot be captured by a permeable
barrier approximation. If condition (3.9) is met, then in the gap the resistance to flow
perpendicular to the fibre is much less than the resistance parallel to the fibre, and
the predominant flux through the fibre is in the perpendicular direction. Thus, the
width of the fibre may be shrunk to zero while maintaining accurate leakage from the
perspective of the outside flow.
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The lubrication approximation is applied within the gap to relate the pressure drop
across the fibre to the flow through the gap. We define the local two-dimensional flow
rate perpendicular to the fibre and summed over both gaps as q(y). With the height
of each gap as (D − d)/2, the length of each gap as w and the flow rate through one
gap as q(y)/2, the lubrication equation within one gap (either above or below the fibre)
integrates to

p+(y)− p−(y)
w

=−6µ q(y)

(
2

D− d

)3

. (3.10)

By continuity, the local flow rate above and below the fibre must equal the flow rate
perpendicular to the fibre (in the n-direction) immediately adjacent to it. We take
the inner product of (3.2) with the vector in the n-direction to calculate the average
velocity normal to the fibre, and multiply by the channel depth, D, to obtain

q(y)=− D3

12µ
∂p(y)

∂n
. (3.11)

Thus, combining (3.10) and (3.11) yields a mixed-type (Robin) boundary condition on
the pressure to be satisfied along the length of the fibre in the xy-plane,

p+(y)− p−(y)=
(

4wD3

(D− d)3

)
∂p(y)

∂n
for 0< y< hy. (3.12)

Note that the derivative of the pressure is continuous, so it is not necessary to
specify on which side of the fibre it is calculated. With boundary condition (3.12)
we are no longer concerned with the specifics of the flow in the gap. Effectively, the
fibre is modelled as being infinitely thin with a certain permeability governed by the
coefficient linking [p+(y)− p−(y)] to ∂p(y)/∂n in the boundary condition. In physical
terms, (3.12) flattens the leakage dynamics into the xy-plane, by equating the flux
entering and exiting the fibre gap to the flux through the fibre gap itself.

In deriving (3.12) we have approximated the flow as transitioning directly from
Hele-Shaw flow away from the fibre to lubrication flow through the fibre itself.
However, a transition region with a more complex three-dimensional velocity field
must exist. For simplicity we require that the flow in this region is governed by Stokes’
equations, necessitating that the Reynolds number here is small (not just the reduced
Reynolds number as in (3.1b)). It is sufficient to specify this condition on the average
Reynolds number calculated from the bulk flow rate and channel depth,

ReD = ρDv

µ
= ρ Q

µH
� 1. (3.13)

If (3.13) is satisfied then we estimate that the size of the transition region scales
with the fibre depth, d (a similar idea appears in Thompson (1968)). Thus, in the
transition region, a pressure drop of order µv/d occurs and is not accounted for in
(3.12). In order for our approximation to be valid we require that this additional
pressure drop is small compared with both the pressure drop in the Hele-Shaw region
and the pressure drop through the gap itself. A scaling argument shows that this
condition may be reduced to the requirement that the depth of the channel is much
less than the height of the fibre,

D� h, (3.14)

along with inequalities (3.7) and (3.8).
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To calculate the degree of bending of the fibre, we compute the force per unit length
acting normal to the fibre, fn(y), by combining the pressure forces on the left and right
faces, fp(y) with the viscous forces on the top and bottom faces, fv(y). The pressure is
already specified and the viscous force may be found by calculating the shear stress
within the gap, τnz, from the lubrication equation (3.10). Consequently,

fn(y)= fv(y)+ fp(y)=
(

2τnzw
)
−
(
[p+(y)− p−(y)]d

)
=
(
−p+(y)− p−(y)

w
· (D− d)

2
w

)
−
([

p+(y)− p−(y)
]
d

)
=−1

2
(D+ d)

[
p+(y)− p−(y)

]
. (3.15)

The fibre is narrower than it is deep, with w < d, so it only deflects in the xy-plane,
with no torsion. We treat the displacement of the fibre using a simplified version of the
beam-bending equation that is derived in appendix A,

d2κ

ds2
+ 1

2
κ3 =− (D+ d)

2EI
[p+(y)− p−(y)], (3.16)

where s is the arclength and κ(y) is the local curvature of the fibre. The shape of
the deflected fibre determines s(y). The Young’s modulus of the fibre is E, and the
moment of inertia is

I = dw3

12
. (3.17)

Finally, to complete the problem statement four boundary conditions are required on
the fibre; the end of the fibre clamped to the channel wall requires u = du/ds = 0 at
y = 0, and since the fibre is slender the other end can be assumed to be moment- and
shear-free, with d2u/ds2 = 0 and d3u/ds3 = 0 at y= hy.

3.2. Non-dimensional equations
We non-dimensionalize the spatial coordinates and deflection by the channel height, H,
and we scale the pressure so as to normalize the far-field condition. The scale of each
variable, given in square brackets, is

[x] = [y] = [s] = [n] = [u] = [κ]−1 = H and [p] = 12µQ

D3
, (3.18)

and we maintain the same notation for dimensionless quantities. The non-
dimensionalized y-coordinate of the tip of the deflected fibre is cy = hy/H. After
algebraic steps the non-dimensional equations become

∇2p= 0 within the cell (3.19a)

∂p

∂y
= 0 y= 0, 1 (3.19b)

p→−x x→±∞ (3.19c)
p= 0 x= u(cy) and y= cy (3.19d)

∂p

∂n
= β(p+ − p−) x= u(y) and y ∈ (0, cy) (3.19e)

d2κ

ds2
+ 1

2
κ3 =−ε(p+ − p−) x= u(y) and y ∈ (0, cy) (3.19f )
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u= du

ds
= 0 x= 0 and y= 0 (3.19g)

d2u

ds2
= d3u

ds3
= 0 x= u(cy) and y= cy, (3.19h)

with three-dimensionless parameters defining the problem,

fibre height c= h

H
(3.20a)

permeability parameter β =
(
(D− d)3

4wD3

)
H (3.20b)

bending parameter ε =
(

D+ d

2EI

)(
12µQ

D3

)
H3. (3.20c)

Not surprisingly, there are multiple ways to non-dimensionalize the distances x, y, s,
n, u and κ−1 in (3.18): for example, one can choose the length scale so the channel
height (H) is fixed or choose the length scale so the fibre height (h) is fixed. Since
the focus of this paper is confinement, we choose to non-dimensionalize by H (fixing
the non-dimensional channel height) and so H appears in all three of the dimensionless
parameters, c, β and ε. This choice also isolates all effects of the fibre height to one
variable, c.

For some readers, however, it might be more natural for h to appear in the bending
parameter, ε. Had we chosen the length scale to be h (fixing the non-dimensional
fibre height) the prefactor on the right-hand side of (3.19f ) would contain an h4 factor
due to the second derivative of the curvature. In § 4.3, we find the proper scaling of
beam deflection (non-dimensionalized by H) for small fibres, c→ 0, to be εc5. In
dimensional terms, this deflection is exactly equivalent to the h4 scaling that would
have appeared had the lengths been non-dimensionalized by h.

4. Asymptotic analysis
We focus on our experiments that are in the regime of small permeability and small

deflection, so we provide an asymptotic analysis of the limit where ε� 1 and β � 1.
This analysis offers an analytical solution for the leading-order pressure field and fibre
deflection, and insight into the scalings of the problem. We shall see that there are
two distinguished limits depending on whether 1� β � ε, referring to permeability
dominated flows, or 1� ε� β, referring to flexion-dominated flows.

Before continuing we note that for small deflections, ε � 1, the leading-order
problem can also be solved for arbitrary β, albeit numerically. For this technique, an
asymptotic expansion is performed using the variable ε, with β left as a parameter in
the problem, including at leading order. The numerical solution technique is described
in § 5.2.

In this section, however, we consider an expansion of the pressure, p(x, y), and
deflection, u(y), according to

p=
∞∑

m=0

δmpm and u=
∞∑

m=1

εmum, (4.1a,b)

where δ (�1) is to be determined. At each order, pm satisfies the Laplace equation,
with impermeable walls at y = 0 and 1, and the reference pressure being set to zero
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undeflected, impermeable fibre of length c = 0.5. This is the leading-order solution, p0 and
ψ0, for flow past a lightly flexed and weakly permeable fibre. (b) Leading-order pressure
versus x at various y heights in the channel.

at the fibre tip, as in (3.19a)–(3.19d). Owing to inextensibility, the total length of the
fibre, c= h/H, can be related to the projected height of the fibre, cy, through

c=
∫ cy

0

√
1+

(
du

dy

)2

dy= cy + O(ε2), (4.2)

so all instances of cy in (3.19) can be replaced with c to O(ε2).
At zeroth order the bending parameter ε = 0, so the fibre is undeflected and vertical.

Therefore, the leading-order geometry is symmetric about x = 0. We expect that the
streamlines of the leading-order flow, corresponding to p0, are also symmetric about
x = 0, because the Laplace equation is linear in x. For reference, we show in figure 4
the leading-order streamlines and curves of constant pressure calculated using the
methods of this and the following sections.

Owing to this symmetry there is no vertical component to the zeroth-order velocity
in the region above the fibre, so ∂p0/∂y = 0 at x = 0. We integrate in y, applying the
boundary condition that the pressure at the tip of the fibre is set to zero by (3.19d), to
obtain

p0 = 0 x= 0 and y ∈ (c, 1). (4.3)

This condition, combined with the streamlines being symmetric about x = 0, requires
that p0 must be antisymmetric about x= 0.

Now we examine the bending equation (3.19f ) using the expansion of (4.1a,b).
Applying the standard definition of curvature in Cartesian coordinates, and assuming
asymmetry in p0 about x = 0, we see that the bending equation reduces to the usual
small-deflection form,

ε
d4u1

dy4
+ O(ε2)=−ε(p0|x=0+ − p0|x=0−)+ O(εδ, ε2)∼∓2εp0|x=0±. (4.4)
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This shows that, as expected on physical grounds, the leading- and first-order
deflection is determined entirely by the zeroth-order pressure field, p0.

Next we write the normal derivatives in the fibre permeability condition (3.19e) as

∂p

∂n

∣∣∣∣
x=u±
=
[

1+
(

du

dy

)2
]−1(

∂p

∂x
− du

dy

∂p

∂y

)
x=u±

. (4.5)

Using (4.5) in the fibre condition (3.19e), and substituting the asymptotic expansions
for u and p (4.1a,b), we obtain(

1− O(ε2)
)[(∂p0

∂x
+ δ ∂p1

∂x
+ O(δ2)

)
x=0±
+
(
εu1 + O(ε2)

)(∂2p0

∂x2
+ O(δ)

)
x=0±

−
(
ε

du1

dy
+ O(ε2)

)(
∂p0

∂y
+ O(δ)+ O(ε)

)
x=0±

]
= β

(
p0|x=0+ − p0|x=0−

)
+ O(βδ)+ O(βε). (4.6)

Replacing the permeability condition on x= u(y) by the expansion (4.6) about x= 0 is
formally correct, as long as the linear beam theory of (4.4) holds, and in particular the
expansion (4.1a,b) remains well-ordered. However, beam deflections that are too large
may cause the series to converge slowly.

From (4.6), and with ε � 1, β � 1, the leading-order boundary condition requires
that at the fibre

∂p0

∂x

∣∣∣∣
x=0±
= 0 at x= 0 and y ∈ (0, c), (4.7)

which is the standard no-flux constraint. Combining the boundary conditions (4.3)
and (4.7) at x = 0 with the boundary conditions (3.19b) at y = 0, 1, and (3.19c) at
x→±∞, the p0 problem is fully defined.

Obtaining appropriate boundary conditions for the first-order correction p1 requires
us to specify the relative magnitudes of the permeability, β, and flexion, ε, and this
leads to three distinguished limits of (4.6).

The first limit is marked by permeability dominated effects, with 1� β � ε. In this
case, we choose δ = β in (4.6), and recalling the aforementioned symmetry of p0, the
first-order boundary condition requires that

∂p1

∂x

∣∣∣∣
x=0±
=±2p0|x=0± at x= 0 and y ∈ (0, c). (4.8)

The result is a dominant balance between the horizontal gradient of p1 and the
permeability. We see that the first-order correction to the pressure field is determined
by the leakage through the fibre, and is in fact independent of the deflection.
Therefore, we may assume that above the straight fibre the corrected streamlines
remain horizontal, so

p1 = 0 at x= 0 and y ∈ (c, 1), (4.9)

similar to the leading-order pressure field p0.
The second distinguished limit is marked by flexion-dominated effects, with

1� ε � β. Thus, we choose δ = ε, and the first-order boundary condition requires
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at O(ε) that

∂p1

∂x

∣∣∣∣
x=0±
=
(

du1

dy

∂p0

∂y
− u1

∂2p0

∂x2

)
x=0±

at x= 0 and y ∈ (0, c). (4.10)

We see here that an advective flux around the deflected fibre leads to the gradient in p1.
In order to apply this boundary condition, the deflection, u1(y), must first be computed
using (4.4).

The third distinguished limit is marked by equal magnitudes of permeability and
flexion, with δ = ε = O(β), and the boundary condition on ∂p1/∂x is the sum of
(4.9) and (4.10). The linearity of the asymptotic approximation then implies that
the solutions of the permeability and flexion dominated limits can be independently
superimposed to form a solution of the third type.

It is worthwhile to note that for a given channel and fibre geometry, all three
distinguished limits may be reached by varying the flow rate, Q. Since ε is the only
term that contains Q, and ε is proportional to Q, it should be possible, starting with
low Q and increasing, to satisfy in a sequential manner the conditions that ε � β,
ε = O(β), and ε � β. In other words, if the flow rate in an experiment is gradually
increased from a very low value, the first-order pressure correction will transition from
being permeability-dominated to flexion-dominated.

4.1. The leading-order pressure, p0

The leading-order pressure, p0, consists of potential flow through a finite channel past
a infinitely thin, impermeable fibre. In solving for the potential flow contained within
an impermeable boundary, complex variable methods known as conformal mapping
can be used to determine analytic solutions in certain cases. These methods rely upon
mapping the physical geometry to an alternate and simpler geometry (such as a disc
or upper half-plane) where the problem is hopefully tractable. Once this new problem
is solved, inverting the map produces the solution in the original geometry. For a
description of such methods, see reviews by Milne-Thomson (1968) and Ablowitz &
Fokas (2003).

The case of flow past a thin, vertical barrier in an unconfined, upper half-plane is
well-known as a standard exercise in conformal mapping (Ablowitz & Fokas 2003, p.
355). We have found that an explicit formula can be written for the confined geometry
as well. The method begins by noting that since p0 satisfies the Laplace equation, we
can first define the complex potential

w0(z)≡ p0(x, y)+ iψ0(x, y), (4.11)

where ψ0 is the stream function and harmonic conjugate of p0, and z = x + iy. Note
that w0 satisfies the Laplace equation, and all of the solid boundaries are impermeable
to leading order. In our method, the physical z-plane (figure 4) is first mapped to
the potential w0-plane (figure 5a, maintaining labels A–G). In particular, the tip of
the barrier (z = ic), is mapped to w0 = 0 because of condition (4.3), while the two
stagnation points are located at w0 = ±k. The value k is currently unknown, and
corresponds to the barrier ‘length’ in the potential plane.

Next, the w0-plane is mapped to the upper-half ζ -plane (figure 5b). To simplify
calculations, we choose to map point F to ζ = 1, and solve for ζE and ζD later; the
transformation is then

ζ = ζEeπw0 . (4.12)
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FIGURE 5. The physical z-plane is mapped to (a) the potential w0-plane and then to (b) the
upper-half ζ -plane. In the potential plane, streamlines (grey) run parallel to the p-axis, while
in the ζ -plane, streamlines (grey) are generated by a sink at ζ = 0.

Now, the goal is to provide a map from the z-plane to the ζ -plane, after which the
pressures and velocities follow from (4.12). The Schwarz–Christoffel formula provides
this connection (cf. Milne-Thomson 1968), and for this particular problem it is given
by

z= f (ζ )≡ K
∫ ζ

1

(ζ ′ − ζE)

ζ ′
√
(ζ ′ − ζD)(ζ ′ − 1)

dζ ′. (4.13)

The symmetry in the potential plane implies that ζD = ζ 2
E , and the constant K can be

derived by requiring that the velocity upstream satisfies dw0/dz=−1, or simply that

πζ
dz

dζ
= πζ K

ζ
=−1, (4.14)

giving K =−1/π. The integral (4.13) can now be computed in closed form and yields

z= f (ζ )= 1
π

log

ζ
(−1+ ζ 2

E

)2
(

2ζ 2
E − ζE − ζ ζ 2

E − 2ζE

√
(ζ − 1)(ζ − ζ 2

E)
)−1

1− 2ζ + ζ 2
E + 2

√
(ζ − 1)(ζ − ζ 2

E)

 , (4.15)

where we have selected the principle branch of the square roots and logarithm.
In order to solve for ζE, we now impose the barrier condition, f (ζE) = ic. Owing to

the branch structure of (4.15), two solutions are given, but the relevant one is

ζE =
(

1+ sin(cπ/2)
1− sin(cπ/2)

)
. (4.16)

Note that the barrier sizes in the physical and potential planes are now related through
ζE = e−πk. It remains to invert (4.15), which can be simplified to

ζ = f−1(z)= A(z)− B(z)
√
∆(z), (4.17a)

while taking the principal branch of the square root, and with components given by

∆(z)= (1− eπ(z+ic))(1− eπ(z−ic)) (4.17b)

A(z)= 1− cos(cπ)+ 2cosh(πz)

2 [1− sin(cπ/2)]2 (4.17c)
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B(z)=− (e−πz + 1)

2 [1− sin(cπ/2)]2 . (4.17d)

The complex potential can now be determined from (4.12), or

w0(z)= 1
π

log
(
ζ

ζE

)
= 1
π

log
[

f−1(z)

(
1− sin(cπ/2)
1+ sin(cπ/2)

)]
, (4.18)

with the pressure p0(x, y) = Re(w0). Curves of constant pressure and streamlines are
shown in figure 4 for a fibre of length c= 0.5.

In computing (4.17), care must be exercised with regards to the branch structure.
In particular, the square root of (4.17b), which appears in (4.17a), contains branch
points at z = ±i(c + 2πm) for m ∈ Z. These are manifestations of the discontinuity
caused by the barrier and the easiest way to compute (4.17) is to take the branch
cut at z = ic directly down the imaginary axis and all other branch cuts parallel to
the horizontal axis. This step allows the use of (4.17) throughout the physical channel
without changing branches.

Possessing a closed-form solution for the leading-order problem is valuable
for several reasons. First, the asymptotics in the two limits of small and large
fibres are derived easily. Deriving higher-order approximations for flows with
asymptotically small geometries is not a trivial problem (see, for example, Tuck
1964), and an explicit solution can be used to work backwards to derive the
subdominant contributions. Second, the numerical computations in § 5 are less
intensive computationally once the most singular impermeable behaviour has been
subtracted out.

4.2. The small fibre limit (c→ 0)
In the limit that c→ 0, the flow in the outer region, with x, y = O(1) fixed and
independent of c, simply tends to uniform flow. From the exact solution (4.18), we can
expand for an outer solution

w0,out =−z−
(π

4
coth

(πz

2

))
c2 + O(c4). (4.19)

The outer solution does not satisfy the fibre permeability condition given by (4.7) to
leading order, ∂p0

∂x = 0, so we search for an inner region where the appropriate scaling
is

z= cZ and w0 = c W0. (4.20a,b)

Within the inner region, the problem for W0 consists of solving for potential flow in
the upper-half Z-plane, with an impermeable slit along 0 < Y < 1. From the exact
solution we have

W0 =−
√

Z2 + 1−
(
π2

24

√
Z2 + 1

)
c2 + O(c4), (4.21)

for which the leading-order term can be seen to match the uniform flow as |Z| →∞.
In fact, this term is simply the solution for flow past a barrier of length one in a
semi-infinite plane, and can be derived in the usual way using conformal mapping (cf.
Ablowitz & Fokas 2003, p. 355). We may combine (4.19)–(4.21) in order to form a
uniformly valid solution w0,unif ∼−

√
z2 + c2, corresponding to a pressure field

p0,unif (x, y)∼−Re
(√

(x+ iy)2+c2

)
. (4.22)
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4.2.1. Pressure field for large fibres (c→ 1)
If we write γ = (1− c) and take the limit of large fibres, c→ 1, so that γ → 0, then

at leading order we have flow through a small slit which produces a unit flux. Away
from the slit, and in a region where x and 1 − y are O(1), we have from (4.18) an
expansion for the potential,

w0 = 2
π

log γ − 1
π

log
[

8
π
(1+ cosh(πz))

]
+ O(γ 4). (4.23)

The first term indicates that the pressure is logarithmically divergent everywhere within
O(1) distances in the bulk of the flow, and the second term corresponds to the problem
of flow produced in a channel due to a source or sink at a point along the channel wall
(cf. Milne-Thomson 1968, p. 272). However, there are two relevant regions where the
approximation in (4.23) breaks down and these regions are marked by locations where
the second term becomes of the same order of magnitude as the first.

There is an inner region near the slit where the relevant inner variable, Z, is defined
through z = i[1 − (1 + Z)γ /2], with an inner solution w0,in = − log[π (1+ Z)2]/π +
O(γ 2), and a corresponding inner pressure field

p0,in =− 1
π

Re
(

log
[

4π
γ 2
(1+ ix− y)2

])
+ O(γ 2). (4.24)

This inner solution indeed satisfies the tip condition w0,in = 0 as Z → 0, and as
Z→∞ it reproduces the source term seen in (4.23). In addition to the inner scaling,
there is a far-field scaling in (4.23), which is required in order to match the uniform
flow. This occurs when z = O(log γ ), and the second term in (4.23) becomes of
leading order.

4.3. Predictions of tip deflection

Having derived the leading-order approximation of the potential, w0, which yields the
leading-order pressure field, we may now integrate the Euler–Bernoulli equation (4.4)
four times to obtain the deflection of the beam. Once the boundary conditions at the
bottom and top of the fibre are imposed, the expression becomes

u(y)∼ ε
∫ y

0

∫ y4

0

∫ y3

c

∫ y2

c
2p0(x= 0−, y1) dy1 dy2 dy3 dy4, (4.25)

with the lower limits of integration having been chosen to satisfy the boundary
conditions automatically. For small fibres, the pressure along the left-hand side of
the fibre is p0 ∼

√
c2 − y2 from (4.22). Integrating this function in (4.25), we obtain an

expression for the maximal deflection for c� 1,

u(c)∼ εc5

(
π

16
− 2

45

)
' 0.15 εc5. (4.26)

In the large fibre limit discussed in § 4.2.1, with c → 1, the pressure is
logarithmically large on the scale of the fibre. Using (4.23), we find that the deflection
of the fibre tip is governed by

u(c)∼ ε
(
− 1

2π
log(1− c)+Λ

)
, (4.27)



Fibres in Hele-Shaw cells 533

 

 

1
5

0

0.2

0.4

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

10–1

10–3

10–5

10–1 100

c

FIGURE 6. The solid line represents the deflection of the fibre tip, u1(c)∼ u(c)/ε, calculated
from (4.25) using the full solution of p0. As c→ 1, u1(c) diverges logarithmically according
to (4.27), shown as a dotted line. In the inset the full solution is again plotted as a solid line,
and the c→ 0 limit from (4.26) is shown dashed.

where the constant is numerically determined to be Λ ≈ −0.176. The solutions
u/ε ∼ u1, are shown in figure 6. At large and small c the analytical limits, (4.26)
and (4.27), closely approximate the full solution (4.25).

Effectively, (4.26) implies that within the small fibre limit, the correct scale of
deflection is O(εc5) instead of O(ε). Consequently, as c→ 0, ε is allowed to be quite
large (i.e. ε � 1/c5), rather than the more strict ε � 1. Thus, in this limit the fibre
can be allowed to be increasingly flexible and the flow rate can be increasingly high
without violating the requirements of the linearized theory. Furthermore, because of
the c5 dependence, in order to match the observed O(1) deflections in the experiments
(where c ≈ 0.3–0.8), ε must in fact be quite large. In the case of large fibres,
c→ 1, however, the bending parameter must satisfy the rather stringent requirement of
ε� 1/|log(1 − c)|. If the fibre is too large, the theory breaks down unless the fibre is
kept sufficiently stiff or the flow rate is kept sufficiently low.

4.4. Predictions of leakage
We can also develop an approximation for the amount of fluid flowing through the
fibre, which can be measured using the horizontal velocity at x = 0. The velocity
is proportional to the pressure gradient, and as we showed in (4.8) and (4.10), the
pressure gradient depends on the relative balances of permeability and fibre bending,
and can be described in the two limits as

vx/β ∼∓2p0|x=0± for β� ε (4.28)

vx/ε ∼−
(

du1

dy

∂p0

∂y
− u1

∂2p0

∂x2

)
x=0±

for ε� β, (4.29)

where vx is scaled by the average velocity in the channel, Q/DH. From (4.28), we
see that when the leakage at the fibre is primarily due to permeability, i.e. β � ε, the
largest leakage occurs near the origin at the base of the fibre where the pressure is
maximal. The least leakage is near the fibre tip where the pressure is zero. In contrast,
when fibre flexion governs vx, i.e. ε � β in (4.29), then the local leakage is zero
at the fibre base and large at the fibre tip. At the tip, the second derivative of the
leading-order pressure is infinite and the fibre is bent, allowing the fluid to pass. Both
results are plotted in figure 7.

There is one unusual element of the horizontal velocities. Recall that p0 is
antisymmetric, so for β � ε, we see from (4.28) that the velocity is both continuous
and positive at the fibre as expected. However, for ε � β, we can verify that the
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FIGURE 7. The leading-order horizontal velocity, vx/β, at x = 0± for permeability dominant
flows, β� ε (shown thin). Also plotted is the horizontal velocity, vx/ε, at x= 0− for a flexion
dominated flow, ε � β, with fibre length c = 0.54 (shown bold). The horizontal velocity at
x= 0+, for ε� β, is the negative of the plotted value.

velocity in (4.29) is positive on the left, but negative on the right. Thus, the asymptotic
approximations predict a flow rightwards on the left of the fibre, but leftwards on
the right. This is counterintuitive because for any non-zero amount of deflection (and
hence any ε > 0), we would expect the flow at the origin to be both continuous and
positive.

In fact, this peculiarity in our asymptotics is due to a further distinguished limit in
the process of taking both x→ 0+ and ε→ 0. Note that in our methodology (cf. in
particular (4.10)), we first took ε→ 0, projected the fibre onto the axis x= 0, and only
then took the limit of x→ 0. This, however, is different from taking x→ 0+ first (to
where the fluid is continuous and has positive horizontal velocity), followed by taking
ε→ 0.

We clarify this issue in appendix B. There, the conclusion is that there exists
a curved region of O(ε) near the fibre where the asymptotic approximation (4.10)
is invalid. The asymptotic series of (4.1a,b) should then be interpreted as an outer
approximation to be matched to an inner solution near the fibre. However, because the
inner limit of the outer solution is known to all orders by (4.6), the solution in the
inner region is unimportant as far as the general macroscopic flow is concerned; it
only serves to explain why the velocity on the right of the fibre predicted by (4.10) is
negative rather than positive.

5. Numerical results
In this section we present numerical computations for the first-order pressure, p1, of

§ 4. In addition, we present a numerical method for solving the system of equations
(3.19) with arbitrary degrees of permeability. An eigenvalue decomposition at x = 0
is used to calculate p1 in the permeability dominated case (1� β � ε), and for the
case of arbitrary permeability (β = O(1), ε � 1). However, when flexion dominates
(1� ε � β), the p1 calculations necessitate a global scheme, and the difficulties of
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FIGURE 8. Streamlines (black), and constant-pressure curves (grey), both given in
increments of 0.125, of p = p0 + βp1 for the permeability-dominated case β � ε where
β = 0.3. The fibre length is c = 0.5, and the inset plot shows the leading-order deflection of
the fibre, u∼ εu1.

such a scheme are discussed. A coupled finite-element package may be appropriate for
this case.

5.1. Permeability dominated flows (ε� β� 1)
In flows where the permeability dominates, the majority of the flux past the fibre in
the three-dimensional problem can be attributed to the flow of fluid going through the
gap above and below the fibre, rather than due to the fibre bending. The object is to
calculate p1(x, y) subject to satisfying the Laplace equation within the channel, no-flux
conditions at the upper and lower walls, with p1→ 0 as |x| →∞, and the conditions
(4.8) and (4.9) at x= 0. We expand p1 into a truncated Fourier series with M modes

p1(x, y)= b0

2
+

M−1∑
m=1

bme−mπ|x| cos(mπy), (5.1)

with eigenfunctions chosen so as to satisfy all conditions on p1 except for those at
x = 0. The unknown coefficients bm are then obtained by imposing the two boundary
conditions along x= 0,

M−1∑
m=1

(mπ)bm cos(mπy)=−2 p0(x= 0−, y) for 0 6 y< c, (5.2a)

b0

2
+

M−1∑
m=1

bm cos(mπy)= 0 for c 6 y< 1, (5.2b)

where p0 is computed using (4.18).
The theory of mixed boundary value problems, studied using a dual series

formulation such as this, is discussed by Sneddon (1966). We solve for the coefficients
bm using collocation: we distribute M points along the interval, y ∈ [0, 1], and solve
the resultant M × M system of equations using Newton’s method. In general, the
solution converges rapidly, and only a modest number of uniformly distributed mesh
points are required (M = 50 for most computations).

In figure 8, the streamlines of the two-term approximation, p ∼ p0 + βp1 are drawn
for the case of permeability dominated flows with β = 0.3. The ability for the model
to capture a small degree of leakage past the fibre is evident. We have chosen a
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relatively large value of β simply to emphasize the influence of leakage, and the
first-order streamlines (p1-streamlines) clearly show passage through the fibre. As β
tends to zero, the majority of the streamlines that pass through the fibre are seen to
be localized near the origin. At this point, vx/β given in (4.28) is maximized and the
first-order contribution is sufficiently large to divert the flow through the fibre, rather
than simply around the structure.

5.2. Small deflection of fibres with arbitrary permeability (ε� 1, β = O(1))
Although up to now our analysis has been focused on the limit of small permeability,
our model in (3.19) is also valid for arbitrary permeability. If we let β = O(1) but
keep ε � 1, then we can treat the problem using the boundary perturbation method
only, expanding p and u explicitly in terms of ε as p= p0 + O(ε) and u= εu1 + O(ε2).
We emphasize that in this new asymptotic framework the leading-order pressure, p0,
and deflection, u1, both include effects of permeability.

Since we are still concerned with small deflections, p0 is again assumed to be
antisymmetric about x= 0. This allows us to extend the condition of p0 = 0 throughout
the gap y ∈ (c, 1) at x = 0, as in § 4. The boundary condition at the fibre (3.19e)
becomes at leading order

∂p0

∂x

∣∣∣∣
x=0±
= 2βp0|x=0+ =−2βp0|x=0−, (5.3)

and to solve for p0 we choose to write,

p0 = φ + p̃0. (5.4)

where we have separated p0 into an approximate solution φ and a correction p̃0.
When β is small and the bulk of the fluid is deflected around the fibre, we take

φ to be the leading-order impermeable solution in § 4.1. However, if β is larger, and
particularly in the limit that β→∞, the boundary condition along the fibre becomes
p0→ 0 at x = 0, and we expect that the fluid completely passes through the fibre; the
leading-order approximation suggests that we choose φ =−x.

In either case, if we use the Fourier series representation of (5.1) for p̃0, the
boundary condition at the fibre (5.3) becomes

(−2β)
b0

2
+
∞∑

m=1

(−mπ− 2β)bm cos(mπy)= 2βφ − ∂φ
∂x

for 0 6 y< c, (5.5)

and is combined with (5.2b) for c 6 y< 1. The right-hand side of (5.5) is evaluated as
x→ 0−, and is equal to one when we choose φ =−x.

The equation for the deflection is the same as (4.4) and the leading-order deflection
u1 is numerically integrated with (4.25). We emphasize again that in this case p0

contains effects of leakage and therefore the prediction u1 is based on leakage effects
as well. An example of the numerical computation of p0 and u1 is shown in figure 9
with permeability β = 2 and fibre length c = 0.5. It should be apparent that the large
value of β has allowed the fluid to pass nearly unhindered by the fibre, and thus the
streamlines closely approximate those for uniform flow.

5.3. Flexion-dominated effects (β� ε� 1)
Returning to the asymptotic formulation presented is § 4, we examine the first-order
correction to the pressure field in the flexion-dominated regime. The difficulty of
numerical computations in this regime is that we no longer know the value of p1
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FIGURE 9. Streamlines (black) and constant pressure lines (grey), both given in increments
of 0.125, of the numerical solution for β = O(1) and ε � 1 from § 5.2. The fibre length is
c= 0.5 and permeability β = 2. The inset plot shows the leading-order deflection of the fibre,
u∼ εu1.

on x = 0 and c < y < 1 (cf. for comparison (5.2b)). Thus, the dual series approach,
which effectively reduces the two-dimensional problem in the channel to a one-
dimensional problem along x= 0, no longer applies for this case.

Numerical computations in this regime require a global method. For example, we
may attempt to compute p1 using a boundary integral approach (see, for example,
Pozrikidis 1992; Vanden-Broeck 2010). However, there is a significant difficulty
towards implementing this approach (and, indeed, any global solver): from the
discussion in § 4.3, we know that the normal derivative of p1, given by (4.10), contains
a non-integrable singularity at the point (0, c). In fact, our asymptotic analysis in
§ 4 can be used to simplify these numerical schemes by allowing us to remove the
dominant singularity at the fibre tip. However, implementing these numerical methods
would take us beyond the scope of this paper, and we have chosen to leave such a
scheme to future work.

6. Discussion
To assess the validity of the leading-order model presented in this work, we may

compare the predictions of fibre deflection to the experimental observations of § 2. The
basis of our theoretical treatment is that the small deflection follows u ∼ εu1, and we
showed how to calculate u1 as a function of the dimensionless fibre height c = h/H
using (4.25), i.e. u1(c). Substituting the definitions of dimensionless u (3.18) and ε
(3.20c) into the asymptotic form, u∼ εu1, we can write the dimensional deflection u as

u∼
[

6µ(D+ d)H4Q

EID3

]
u1 (c) , (6.1)

which gives a prediction for the slope of u versus Q, for small Q. We now rearrange
this equation to compare physical quantities on the right to a calculated quantity,
u1(h/H), on the left and obtain

u1 (c)∼
[

E
(

1
12 dw3

)
D3

6µ(D+ d)H4

]
u

Q
, (6.2)

where we have substituted I from (3.17). Thus, u1 is essentially a scaling of u/Q,
and should collapse the data for different geometries (different w) so that it is only a
function of h/H = c.
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FIGURE 10. (a) Experimental deflection data measured from one particular fibre, with
w = 22 µm, h = 241 µm, d = 56 µm and D = 66 µm. The solid line represents the slope
of u versus Q as Q→ 0 for this fibre, fitted from the first five data points. (b) Data points
show values of u1 for all experiments (determined from measured u/Q and average E), along
with theoretical predictions given by solid and dashed lines. In the experiments w varies from
22 to 34 µm, but the form of u1, (6.2), scales out this dependency. The horizontal error bars
are smaller than the data points. The two middle points are crossed to highlight them for
discussion in the text. Values of β lie between 0.0179 and 0.0226.

6.1. Comparison with experiments

We now seek to validate (6.2): first, we determine the initial slope u/Q for an
individual fibre from the recorded deflection data by fitting a least-squares linear
regression to the data points at low flow rates. One data set, with its linear regression,
is shown in figure 10(a).

Now all terms in (6.2) are known except for the Young’s modulus, E. Most
importantly, we know the ratio c = h/H, and therefore we may calculate a prediction
for u1(c) using (4.25). We thus solve for the unknown E in (6.2) for each experiment,
using the measured slope u/Q and the prediction u1(c). We then average E over all
experiments to obtain E = 63 ± 22 kPa. An additional benefit of this experimental set
up then is that it allows us to measure the elasticity of PEGDA polymerized with these
specific cross-linking conditions, which we believe had not been done before.

We may now determine experimental values of u1 from the expression on the
right-hand side of (6.2), using the average value of E = 63 kPa and the measured
values of u/Q, w, d, D, H and µ. Note that, since the average value of E is used
for all experiments, the effect of E is only to offset all data points by a multiplicative
constant; the shape of the u1(c) trend is unaffected. Recall that w varies from 22 to
34 µm, and that h varies from 144 to 293 µm; all other parameters are held constant.
All experimental values of u1 are plotted as a function of c in figure 10(b), with the
dependency on w scaled out through (6.2).

The leading-order solution u1(c), computed using (4.25), is shown alongside the data
in figure 10b for comparison. The analytical solution for small c, given by (4.26), is
presented as well. Error bars in the plot are determined from estimated variances in
the parameters involved in calculating u1, as well as the variance in E reported above
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and the error in calculating the regression for the initial slope of u versus Q (Student’s
t test, with 95 % confidence interval). The permeability parameter, β, ranges from
0.0179 to 0.0226, and since β is small we expect the experimental values of u1 to lie
close to the leading-order solution.

Indeed, the data appears to agree well with the trend u1(c) calculated from (4.25),
although there exists some scatter. We can posit various reasons for the observed
scatter, with perhaps the most likely being variations in fibre elasticity. Great care
was taken to ensure constant polymerization conditions, but this is a relatively new
experimental technique, and reproducibility issues have been raised before (Berthet
2012). The Young’s modulus E could vary from fibre to fibre and we have no direct
way of measuring this on a specific fibre; instead we average over the suite of
experiments to obtain a value of the Young’s modulus with variances. Variations in
Young’s modulus are most apparent in the two ‘crossed’ data points in figure 10b. The
geometry of these experiments is nearly identical, but they lie on opposite sides of the
predicted trend, indicating the presence of some unobservable difference between the
two fibres. Another possible reason for the scatter is difficulty in measuring the fibre
depth, d.

The model is able to predict the deflection within reasonable error bounds for much
of the dataset, however, and this resolution is likely good enough for one application
of our technology: microfluidic flow measurement. Given a microfluidic channel of
a certain geometry and a microscope capable of sensing deflections at a certain
resolution, our model can be used to specify the size of the sensing fibre necessary for
a range of expected flow rates. Then, as long as the flow remains in the linear regime,
only one calibration experiment is necessary to precisely calibrate flow measurement.

7. Conclusion
In this paper we have presented an experimental and theoretical study investigating

the dynamics of confined fibres bent by an external viscous flow. Using a novel
microfluidic setup, we constructed flexible micrometre-sized fibres anchored in a
channel and performed experiments measuring tip deflection versus flow rate. We
proposed a mathematical model that reduced the three-dimensional geometry of the
flow to a two-dimensional Hele-Shaw approximation. Within the two-dimensional
approximation, boundary conditions at the fibre allowed for leakage flow through
the small gap above and below the fibre, giving the confined fibre an effectively
permeability.

Motivated by the experimental observation of a linear relationship between
deflection and flow rate for highly confined fibres at low flow rates, asymptotic
solutions were sought in the limits of small flexion (ε) and small permeability (β). The
leading-order pressure field, p0, was derived in closed form using complex variable
methods. It was shown that there exist two distinguished limits for the first-order
pressure correction, p1, and results for these two limits are summarized in table 1. A
similar problem formulation was then used to numerically solve for the pressure field
corresponding to arbitrary degrees of dimensionless permeability, β.

We use the leading-order pressure field, p0, to predict the leading- and first-order
deflection of the fibre, and validate our calculations with analytical limits at small
and large fibre heights. The predicted deflection compares favourably to the results
of our microfluidic experiments and allows us to measure the elasticity of PEGDA
polymerized with our specific cross-linking conditions. We note that there still exist
open questions to be studied with the tools presented in this paper. Further work could
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Permeability
dominated

Flexion
dominated

1� β� ε 1� ε� β

Correction to flow streamlines Symmetric about
x= 0

Lacks symmetry
due to fibre deflection

Location of maximum flux at x= 0 Fibre base Fibre tip

Numerical solution method Dual Fourier series
along centreline

x= 0

Global method
(e.g. boundary integral)

TABLE 1. Properties of the first-order pressure correction, p1.

be done investigating the regime of large fibre deflections, the dynamics of a system
with multiple fibres, and the effects of channel elasticity.
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Appendix A. Derivation of beam bending equation
In this appendix we derive the simplified beam bending equation (3.16). We define

the force per unit length acting on a fibre as f = fses + fnen and the force and moment
transmitted through the fibre as T = Tses + Tnen and M, respectively. The unit vectors
es and en are in the tangential and normal directions. We perform a force and moment
balance on an infinitesimal section of the fibre, while specifying inextensibility, to
obtain

dT
ds
+ f = 0 and

dM

ds
+ Tn = 0. (A 1a,b)

Assuming that the moment is tied to the curvature through M = EIκ , we arrive at a set
of equations to describe the deflection of the fibre through a balance of forces in the
two directions,

es component : dTs

ds
+ EIκ

dκ
ds
+ fs = 0 (A 2a)

en component : −EI
d2κ

ds2
+ κTs + fn = 0. (A 2b)

Recall that fn is related to the pressure drop across the fibre and is given by
(3.15). The tangential force, fs, can be estimated to be (µ∂vs/∂n) d, where vs is the
component of velocity locally parallel to the fibre. Hele-Shaw theory does not allow
for the no-slip condition to be satisfied at the face of the fibre, so the gradient ∂vs/∂n
exists to decrease the velocity from a bulk value to zero. Thompson (1968) shows that
for simple Hele-Shaw problems there is an inner region the size of the channel depth
D where this transition takes place, but for our problem we estimate that it should
depend on the depth of the fibre d instead. Thus, we chose d as the size of the inner
region, setting the scale for the denominator of the gradient, and taking the average
velocity Q/DH as a scale for vs we estimate that fs ∼ µQ/DH.
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To simplify (A 2), we non-dimensionalize and drop the smallest terms. The pressure
and all lengths (including κ−1) are non-dimensionalized according to (3.18). The
tangent force fs is non-dimensionalized by the scale in the previous paragraph. The
scale of Ts is set by a balance between the first and second terms of (A 2a), with
Ts ∼ EI/H2. If instead the scale of Ts had been chosen to balance the first and third
terms, with Ts ∼ µQd/D2, there would be an inconsistent balance, with the second
term being O((εD/H)−1)� 1. Keeping the same names for dimensionless quantities,
we have

es component : dTs

ds
+ κ dκ

ds
+ D

6(D+ d)

D

H
εfs = 0 (A 3a)

en component : −d2κ

ds2
+ κTs − ε[p+ − p−] = 0. (A 3b)

The Hele-Shaw approximation is based on the assumption that D/H � 1, so we
drop the last term in (A 3a). We now integrate this equation in s, and set the
integration constant equal to zero since the end of the fibre has no applied tension
(Ts = 0) and no applied moment (M = κ = 0). Substituting into (A 3b), we have
reduced the system to one ordinary differential equation,

d2κ

ds2
+ 1

2
κ3 =−ε[p+ − p−]. (A 4)

This equation is re-dimensionalized to arrive at (3.16).

Appendix B. Non-uniformity of limits and fibre tip divergence
In the asymptotic analysis of § 4.3, it was observed that the first-order correction

predicts that the horizontal fluid velocity is positive on the left of x = 0 but negative
on the right. We explained that this is an effect of the distinguished nature of the
x→ 0 and ε→ 0 limits. In this section, we clarify this point and also comment on the
divergence of the asymptotic approximations near the fibre tip, which is an important
issue for the numerical computations in § 5.

It suffices to study a simpler problem: consider flow in the upper half-plane past an
infinitesimally thin vertical barrier of height y = c placed at x = ε. The exact solution
is known through conformal mapping (in fact, this is simply the solution (4.21) shifted
in x by an amount ε). The complex potential, with w(z)= p(x, y)+ iψ(x, y) is given by

w(z)=A
√
(z− ε)2+c2, (B 1)

with A = 1 for upstream (x< ε) and A =−1 for downstream (x> ε). Assuming that
z is held fixed, we expand (B 1) to obtain an outer expansion for the potential,

wout(z)=A0

(√
z2 + c2 − ε z√

c2 + z2
+ ε2 c2

2
(
z2 + c2

)3/2 + O(ε3)

)
, (B 2)

with now A0 =±1 depending on x ≶ 0.
As mentioned in § 4.3, the asymptotic approximation (B 2) predicts a discontinuous

velocity at x= 0, and this is due to the fact that when we expand (B 1) to obtain (B 2),
we fix z = O(1), take ε→ 0, and then only afterwards take the limit of Re(z)→ 0
in (B 2) to derive the value along x = 0. This is different to taking x→ 0 first, and
then afterwards expanding for small ε.



542 J. S. Wexler et al.

c

x

y

  –1

1
x

p

0

0.5

1.0

1.5

–2.0 2.0–1.5 1.5–1.0 1.0–0.5 0.50

–1 1

FIGURE 11. Streamlines Im(w), accurate to O(ε2), and given in increments of 0.1, for a
vertical fibre at x = ε = 0.25, with c = 1 in an unbounded half-plane. The shaded portion
denotes the inner region. The inset shows the pressure p(x, 0.25) with the outer solution (thin)
and the inner solution (bold grey).

The key is to introduce a boundary layer of size ε near x = ε. Near the barrier, we
introduce the re-scaled coordinate X = (x− ε)/ε, and from (B 1), we obtain

win(X, y)=B

(√
c2 − y2 + ε iXy√

c2 − y2
+ ε2 c2X2

2 (c2 − y2)
3/2 + O(ε3)

)
, (B 3)

where B = ±1 for X ≶ 0. Thus, when the value of y is fixed with 0 < y < c, we use
Re[wout] for the pressure when x < 0, Re[win] from 0 < x < 2ε, and again Re[wout]
from x > 2ε. Any multiple of ε is valid since such boundary layers are only defined
within orders of ε. An example of such an approximation, accurate to O(ε2) in each
region, is shown in figure 11. There, we see that the introduction of the inner region is
necessary to ensure that the streamlines are continuous across the origin.

Note that the introduction of the inner region on the right of the fibre is more for
aesthetic reasons, because at higher orders the outer approximation (B 2) for x> 0 will
begin to ‘form’ the fibre at x = ε. However, for all finite truncations of the series, the
velocity at x = ε will continue to be non-zero. The inner region to the right of the
fibre provides us with the ability to achieve a zero velocity at x = ε using a finite
asymptotic approximation.

Figure 11 also makes it apparent that an additional matching region must be
imposed along the path of the tip of the fibre, z = x + ic for 0 < x < ε, and the
worst of this behaviour is seen at the point z = ic, where the outer approximation
wout in (B 2) is clearly divergent. Of course, these are all of the inherent caveats of
using a (singular) asymptotic methodology that depends on shifting the geometry of
the problem.

The full problem of § 4 is different in that it requires an upper channel wall
at y = 1, and also the fibre position is no longer fixed at x = ε, but is rather at
x= u(y)= εu1 + ε2u2 + · · ·. Consequently, the exact solution is unknown, and we must
derive the inner and outer solutions term by term, carefully matching at each order.

However, the qualitative conclusions we have reached for the model problem remain
valid for the full problem: the outer asymptotic expansion (4.1a,b) is invalid within
a boundary layer of O(ε) near the barrier, and this explains the odd velocities when
taking x→ 0 in (4.29). The inner solution near the fibre can be determined by
rescaling near the fibre and matching outwards to the inner limit of the outer solution.
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However, because the fibre is deflected according to (4.25), we assume that this inner
problem would need to be determined numerically.
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