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New gravity–capillary waves at low speeds.
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When traditional linearized theory is used to study gravity–capillary waves produced
by flow past an obstruction, the geometry of the object is assumed to be small in
one or several of its dimensions. In order to preserve the nonlinear nature of the
obstruction, asymptotic expansions in the low-Froude-number or low-Bond-number
limits can be derived, but here, the solutions are waveless to every order. This
is because the waves are in fact, exponentially small, and thus beyond-all-orders
of regular asymptotics; their formation is a consequence of the divergence of
the asymptotic series and the associated Stokes Phenomenon. In Part 1 (Trinh &
Chapman, J. Fluid Mech., vol. 724, 2013b, pp. 367–391), we showed how exponential
asymptotics could be used to study the problem when the size of the obstruction is
first linearized. In this paper, we extend the analysis to the nonlinear problem, thus
allowing the full geometry to be considered at leading order. When applied to the
classic problem of flow over a step, our analysis reveals the existence of six classes
of gravity–capillary waves, two of which share a connection with the usual linearized
solutions first discovered by Rayleigh. The new solutions arise due to the availability
of multiple singularities in the geometry, coupled with the interplay of gravitational
and cohesive effects.
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1. Introduction
Consider water that flows past a fishing line, which we model as a pressure

distribution applied near the surface. As Rayleigh (1883) demonstrated, if the
velocity of the stream is kept above some critical velocity, then capillary waves
are produced upstream and gravity waves downstream. However, if the speed of
the stream is too small, then subcritical or supercitical solitary waves are produced
instead. This classification of the dynamics holds similarly for many flows past more
general obstructions, where we can linearize the geometry in one or several of its
dimensions. Thus, typical linearized theory does not really distinguish between flows
past differently shaped objects, but merely requires that they are sufficiently small
(see e.g. Forbes 1983; King & Bloor 1987). The question which we address in this
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paper is: what can be said about gravity–capillary flows over obstructions which are
not linearized?

There are two important parameters: the Froude number, F (ratio of inertial to
gravitational forces) and the Bond number, B (ratio of gravitational to surface tension
forces). In a previous work (Trinh & Chapman 2013b, henceforth referred to as
Part 1) we showed how the typical linearized theory can be re-interpreted in the
low-Froude-number and low-Bond-number limits. If q is the speed of the free-surface
flow, and F2 = O(ε) while B = O(ε2), then the typical asymptotic expansion gives the
base series, which we denote as ©B , and write

©B [q0 + εq1 + ε2q2 + O(ε3)]e0, (1.1)

valid as ε→ 0. The base series, ©B , is waveless to every order, and in fact, the gravity
and capillary waves are exponentially small and thus beyond-all-orders. These waves
are switched on when ©B is analytically continued across critical curves (Stokes lines)
in the complex plane in a process known as the Stokes Phenomenon. We use the
notation ©B > ©G or ©B > ©C to indicate the switching-on of a gravity or capillary wave,
respectively, and these waves are written as

©G [A1 + O(ε)]e−χg/ε and ©C [B1 + O(ε)]e−χc/ε. (1.2)

In the linearized problem of flow over a step (Part 1), Stokes lines originate from the
single, merged singularity which represents the step, and the point where the gravity
and capillary waves are equal in magnitude corresponds to the critical bifurcation in
the Froude–Bond-number plane.

The nonlinear analysis of this work differs from the linear analysis in two important
ways. First, a nonlinear geometry usually contains multiple singularities and hence
multiple Stokes lines; each singularity then has the potential to produce both gravity
and capillary waves. Second, gravity and capillary waves can themselves interact, with
©G > ©C or ©C > ©G . These more complicated secondary switchings may be accompanied
by crossing Stokes lines, the higher-order Stokes Phenomenon, and other, more
advanced, aspects of exponential asymptotics highlighted by Howls, Langman &
Daalhuis (2004), Olde Daalhuis (2004), Chapman & Mortimer (2005) and Chapman
et al. (2007).

Our main result shows that for a nonlinear obstruction, the typical bifurcation curve
in the Froude–Bond-number plane thickens, revealing new possibilities for solutions.
The thickness of this curve is a manifestation of the finite nature of the obstruction,
and shrinks to zero as the geometry is linearized. For example, in the case of a
rectangular step, rather than the two standard linear solutions of Rayleigh (1883), there
are now six possible solutions, for which the previous two are special cases.

1.1. Physical and mathematical background
A review of the physical and mathematical literature that motivates this work can
be found in the introduction of Part 1. The situation of free-surface gravity–capillary
waves produced by flow past an obstruction is a well-studied problem, and so we shall
only mention the more comprehensive reviews of the topic by Dias & Kharif (1999)
and Vanden-Broeck (2010), and of course, classic texts by Lamb (1932) and Stoker
(1957).

As for the mathematical techniques we use in this paper, known as exponential
asymptotics, these are directly based on the methods introduced by Chapman, King
& Adams (1998) and previously applied to study wave–structure interactions for
pure capillary waves (Chapman & Vanden-Broeck 2002), and pure gravity waves
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FIGURE 1. We consider a typical flow over an obstruction. The flow in the physical xy-plane
(a) is first mapped to the potential w = φ + iψ plane, then again mapped to the upper
half-(ζ = ξ + iη)-plane (b). For flow in a channel, the latter map is given by ζ = e−w.

(Chapman & Vanden-Broeck 2006; Trinh, Chapman & Vanden-Broeck 2011; Lustri,
McCue & Binder 2012). A variety of other approaches to exponential asymptotics are
available, and we refer the readers to the books by Dingle (1973), Boyd (1998) and
Costin (2008) for an overview of the different techniques.

2. Mathematical formulation

We briefly recapitulate the relevant equations, which parallel the ones presented
in Part 1, but this time, we allow for the possibility of flows over more general
geometries. Consider steady, two-dimensional potential flow of an incompressible
fluid with upstream velocity U, and a prescribed length scale L. The flow is non-
dimensionalized with characteristic scales of U and L/π for the velocity and lengths,
respectively, and the physical z = x + iy plane is mapped to the complex potential
w = φ + iψ plane, then mapped again to the upper half-(ζ = ξ + iη)-plane using
ζ = e−w. The free surface is then given by

log q=− 1
π
−
∫ ∞
−∞

θ(ξ ′)
ξ ′ − ξ dξ ′, (2.1a)

βε

[
q2 dq

dφ

]
− βτε2

[
q2 d2θ

dφ2
+ q

dq

dφ
dθ
dφ

]
=− sin θ, (2.1b)

where F2 = βε is the square of the Froude number, B= βτε2 is the Bond number, and
for hodograph variables log(dw/dz) = log q − iθ , where q is the fluid speed and θ is
the angle the streamlines make with the x-axis. This set-up is presented in figure 1.

Our analysis must then be extended to the complexification of the free surface
(originally, q and θ for ξ ∈ R+). Analytically continuing the free surface into the upper
half-ξ -plane and relabelling ξ 7→ ζ and φ 7→ w gives

log q− iθ =− 1
π

∫ 0

−∞

θ(ξ ′)
ξ ′ − ζ dξ ′ +H θ(ζ ), (2.2a)

βε

[
q2 dq

dw

]
− βτε2

[
q2 d2θ

dw2
+ q

dq

dw

dθ
dw

]
=− sin θ, (2.2b)
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where H denotes the Hilbert transform operator on the semi-infinite interval ξ > 0
which corresponds to the free boundary, i.e.

H θ(ζ )=− 1
π

∫ ∞
0

θ(ξ ′)
ξ ′ − ζ dξ ′. (2.3)

2.1. The inclined step
The methodology developed throughout this paper is applicable to most general non-
surface-piercing geometries, which are chosen by imposing the value of θ along the
negative ζ = ξ axis. With minimal modification, it can also be applied to surface-
piercing obstructions (such as for a ship), the only significant difficulty being the
assumptions to make near the point of contact (see Trinh et al. 2011).

However, for concreteness and illustration, we will often take as an example the step
in a channel, with

ζ = e−w (2.4)

and

θ =


0 for ζ <−b
σπ for ζ ∈ (−b,−a)
0 for ζ ∈ (−a, 0)

(2.5)

where 0 < a < b. We will always imagine a stepping up (from left-to-right), with
b associated with the stagnation point, a associated with the corner, and therefore
0< σ < 1. In the next section, we will see that at zero Froude and Bond numbers, the
leading-order solution is provided by substituting the above values for θ along ζ < 0,
as well as θ = 0 for ζ > 0, into the boundary integral equation (2.2a), giving

q∼
(
ζ + b

ζ + a

)σ
and θ = 0+ O(ε), (2.6)

which is often termed the rigid-wall flow, as it is equivalent to replacing the free
surface by a rigid wall, θ = 0.

3. Asymptotic approximation
Substituting the usual perturbation expansions (the base series),

θ ∼
∞∑

n=0

εnθn and q∼
∞∑

n=0

εnqn (3.1)

into (2.2a) and (2.2b) yields at O(1),

θ0 = 0, (3.2a)

log q0 =− 1
π

∫ 0

−∞

θ(ξ ′)
ξ ′ − ζ dξ ′, (3.2b)

and at O(ε),

q2
0

dq0

dw
=− 1

β
θ1, (3.2c)

q1

q0
− iθ1 =H θ1(ζ ). (3.2d)
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Notice that imposing the bottom topography in (3.2b) determines θ along ξ ∈ R−. The
leading-order solutions (3.2a)–(3.2b) simply correspond to the rigid wall flow whereby
the free surface is replaced by θ = 0.

The full expressions for the higher O(εn) terms are prohibitively complicated, but
since we are mainly concerned with the limit n→∞, we may proceed in the
following manner: the complexification of the leading-order free surface, q0, will
typically contain singularities, identifiable with singularities in the flow domain, such
as those corresponding to corners or stagnation points. However, because all the
higher-order problems are linear, no new singularities can be introduced and thus, for
all n, the singular points of qn must be the same points as for q0.

Now if we examine the dynamic condition (2.2b), we can see that each successive
term of the asymptotic approximation requires the derivative of the previous term.
Then if qn contains a singularity of the form 1/ (w− w∗)n, qn+1 will contain a
singularity of the form n/ (w− w∗)n+1. Thus as n→∞, we can expect the late
terms to behave like factorial over power, or

θn ∼ Θ(w)0(n+ γ )
χ (w)n+γ

and qn ∼ Q(w)0(n+ γ )
χ (w)n+γ

. (3.3)

In fact, the inductive argument used to explain the divergence of the asymptotic
expansion according to (3.3) also serves to explain why the free-surface waves are
expected to be exponentially small in the limit ε→ 0: the leading-order solution (2.6)
is waveless, and since the values of qn and θn only depend on the derivatives of
the previous orders, then none of the terms in the naive expansion (3.1) will contain
waves.

Proceeding then with the ansatz (3.3), we can now pinpoint the necessary terms
required at O(εn). In the limit that n→∞, terms like qmqn for m finite dominate terms
with smaller indices in n, such as qmqn−1. Moreover, differentiating a term increases
the order (in n) by 1, so a term like εdqn−1/dw is of the same order as qn. The relevant
terms at O(εn) of the boundary integral equation (2.2a) are thus

qn

q0
− qn−1q1

q2
0

+ · · · − iθn =H θn(ζ ), (3.4)

for n > 2. It is known that as n→∞, the Hilbert transform on the right-hand side of
this equation is exponentially subdominant to the terms on the left (see Part 1 or e.g.
Chapman & Vanden-Broeck 2006 for further details). Thus,

θn ∼−i
qn

q0
+ iq1qn−1

q2
0

+ · · · as n→∞, (3.5)

or

qn ∼ iq0θn + iθn−1q1 + · · · as n→∞. (3.6)

As for Bernoulli’s equation (2.2b), we will use (3.6) to replace qn with θn, after which
the relevant terms at O(εn) are

first and second order as n→∞︷ ︸︸ ︷[
iq3

0

]
θ ′n−1 −

[
τq2

0

]
θ ′′n−2 +

[
1
β

]
θn

+ [3iq2
0q′0
]
θn−1 +

[
3iq2

0q1 − τq0q′0
]
θ ′n−2 − [2τq0q1] θ ′′n−3︸ ︷︷ ︸

second order as n→∞

= 0, (3.7)
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with primes denoting differentiation in w. Using the ansatz (3.3) in the above equation,
we have at leading order as n→∞,

−iq3
0χ
′ − τq2

0 (χ
′)2+ 1

β
= 0, (3.8)

which is simply solved to give

dχ
dw
=−i

[
q2

0 ±
√
∆

2τq0

]
, (3.9)

where

∆= q4
0 − A and A= 4τ

β
, (3.10)

and A will turn out to be a key parameter. Remember that χ is the portion of the
ansatz (3.3) that expresses the singularities of the higher-order terms. Since χ(w∗)= 0
for one of these singularities, w∗, we may express

χ±(w)=−i
∫ w

w∗

[
q2

0 ±
√
∆

2τq0

]
dϕ. (3.11)

Note that in writing (3.11), we shall restrict the path of integration to be along
the same Riemann sheet as w∗. Integration contours that traverse different sheets
(for example, by crossing the branch cut(s) from ∆ = 0) will be addressed in later
sections, and in particular, the Appendix. By taking the limit of (3.11) as τ → 0 and
comparing with Chapman & Vanden-Broeck (2002; 2006), we see that the positive
sign corresponds to capillary waves and the negative sign to gravity waves.

Now returning to the dynamic condition (3.7) and with the ansatzes (3.3), we find at
next order in n:[

iq3
0

]
Θ ′ − [τq2

0

] {−2χ ′Θ ′ − χ ′′Θ}+ [3iq2
0q′0
]
Θ

+ [3iq2
0q1 − τq0q′0

] {−χ ′Θ}− [2τq0q1]
{
(χ ′)2Θ

}
= 0. (3.12)

We may write this as

Θ ′

Θ
=−1

4
∆′

∆
± ∆′

2
√
∆(∆+ A)

+ F±(w), (3.13)

with

F±(w)≡ iq1

2τ

[
1± ∆+ 2A√

∆(∆+ A)

]
, (3.14)

and thus, after one integration,

Θ(w)=
(√

∆+ A+√∆
)±1

Λ±

∆1/4
exp

[∫ w

w?
F±(ϕ) dϕ

]
, (3.15)

where Λ± is a constant and we may begin the integration at any arbitrary point w= w?

where the integral is defined (often w∗ is a natural choice for w?, but the integral may
not exist at w∗). Note that (3.6) allows us to relate Q and Θ , by

Q∼ iq0Θ. (3.16)
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As a check, we may take the limit of τ → 0 and use the negative sign of (3.15). This
recovers the pre-factor for the gravity-wave problem,

Θ−(w)=− iΛ−
2q3

0

exp
[
−3i

∫ w

w?

q1

q4
0

dϕ
]
, (3.17)

to leading order, which differs from (3.16) in Chapman & Vanden-Broeck (2006) by a
factor of a half (our Λ− is their 2Λ).

A note on the ± notation
As we have seen, each singularity is associated with two branches of χ = χ± in (3.11),
for which the positive sign has been shown to correspond to capillary waves and
the negative sign to gravity waves. There are also associated Θ = Θ±, Q = Q± and
Λ = Λ± quantities. In what follows, we will sometimes use non-subscripted variables
if it is unimportant which branch of χ we are referring to.

4. Optimal truncation and Stokes line smoothing
The underlying divergence of the asymptotic expansions will cause the Stokes

Phenomenon to occur: as the complexified asymptotic solution crosses a critical line
(the Stokes line), a small exponential switches on. Because the switching-on of the
exponential is almost always via an error function (Berry 1989), the optimal truncation
and Stokes smoothing procedure will be similar to the one we performed in Part 1,
with the exception of the nonlinear terms.

To begin, we truncate the asymptotic series at n=N so that

θ =
N−1∑
n=0

εnθn + RN and q=
N−1∑
n=0

εnqn + SN , (4.1)

where the remainders are related by (3.6) and thus

SN

q0
− εq1SN

q2
0

− ε
N q1qN−1

q2
0

+ · · · = iRN . (4.2)

We will substitute the truncated sums (4.1) into Bernoulli’s equation (2.2b) and in
doing so, we will see two separate types of terms, the ones involving only qn and θn,
and the ones involving the remainders, RN and SN .

Let us first study the terms involving the remainders. The remainder SN can be
written in terms of RN by (4.2) and after making this substitution, we are particularly
interested in the leading-order terms, which are indicated by factors of RN , εR′N and
ε2R′′N , and second-order terms, which are indicated by factors of εRN , ε2R′N and
ε3R′′N . The relevant terms from Bernoulli’s equation are then given by the linear
operator defined by

L(RN ; ε)=
[
iq3

0

]
εR′N −

[
τq2

0

]
ε2R′′N +

[
1
β

]
RN

+ [3iq2
0q′0
]
εRN +

[
3iq2

0q1 − τq0q′0
]
ε2R′N − [2τq0q1] ε3R′′N , (4.3)

which is exactly the same form as the left-hand side of (3.7). We then introduce the
Stokes smoothing parameter, S = S(w), and set RN = S[Θe−χ/ε]. We know that the
ansatz Θe−χ/ε solves L = 0, so only terms involving derivatives of S will be left.
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After some computation, we find to leading order,

L(RN ; ε)∼ εΘe−χ/ε
dS
dw
[iq3

0 + 2τq2
0χ
′]. (4.4a)

Writing dS/dw= χ ′dS/dχ , and using (3.8) gives

L(RN ; ε)∼ εΘe−χ/ε
dS
dχ

[
1
β
+ τq2

0 (χ
′)2
]
. (4.4b)

Now let us turn to the terms in Bernoulli’s equation that involve qn and θn: when the
truncated sum in (4.1) is substituted into (2.2b), terms of O(εN−1) will automatically
be satisfied, and this process leaves us only with the remnant O(εN ) contributions
from the inertial terms, as well as the O(εN ) and O(εN+1) contributions from the
surface-tension terms:

εN
[

q2
0

dqN−1

dw
+ · · ·

]
− εN τ

[
q2

0

d2θN−2

dw2
+ · · ·

]
− εN+1τ

[
q2

0

d2θN−1

dw2
+ · · ·

]
= εN

[
−θN

β
+ · · ·

]
− εN+1τ

[
q2

0

d2θN−1

dw2
+ · · ·

]
, (4.5)

and thus in total we have, from Bernoulli’s equation (2.2b),

L(RN ; ε)∼ εN
[
θN

β
+ ετq2

0

d2θN−1

dw2

]
, (4.6)

where the left hand-side follows from (4.4b). Since we are interested in the limit
ε → 0 when N →∞, we can substitute the late-orders ansatz of (3.3) into the
right-hand side of (4.6), giving

L(RN ; ε)∼ ε
NΘ0(N + γ )

χN+γ

[
1
β
+ τq2

0 (χ
′)2
ε(N + γ + 1)

χ

]
. (4.7)

We introduce a coordinate system along the Stokes line using χ = reiϑ . The optimal
truncation point (where adjacent terms of the expansion are equal in size) is at dr/εe,
so we write N = r/ε + ρ where ρ ∈ [0, 1). Changing to differentiation in ϑ , using

d
dχ
=− ie−iϑ

r

d
dϑ
, (4.8)

and applying Stirling’s formula to (4.7) gives, in combination with (4.4b),

dS
dϑ

[
1
β
+ τq2

0 (χ
′)2
]
∼
√

2πr

εγ+1/2

[
1
β
+ τq2

0 (χ
′)2

eiϑ

]
i (e−iϑ)

r/ε+ρ+γ
ereiϑ /εe−r/εeiϑ . (4.9)

The exponential factor on the right is exponentially small, except near the Stokes
line ϑ = 0, where the critical scaling occurs with ϑ = √εϑ . Under this scaling, (4.9)
yields,

dS
dϑ
∼ i
√

2πr

εγ
exp

(
−rϑ

2

2

)
, (4.10)
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and we have recovered the typical error function expression for the Stokes multiplier,
S . We now integrate this expression across the Stokes line from upstream, or ϑ =∞,
to downstream, or ϑ =−∞. The apparent jump in the remainders of θ and q are then

[RN ]downstream
upstream ∼−2πi

εγ
Θe−χ/ε ≡ θexp, (4.11a)

[SN ]downstream
upstream ∼−2πi

εγ
Qe−χ/ε ≡ qexp. (4.11b)

We can re-introduce the notation for the switching-on mechanism used in Part 1. We
write, for example, ∑

n

εnqn
Stag.−−−→
©B>©C

∑
n

εnqn + qexp, (4.12a)

∑
n

εnqn
Corn.−−−→
©B>©G

∑
n

εnqn + qexp, (4.12b)

and the arrow notation should be read as ‘the base series turns on a capillary/gravity
wave as the Stokes line from the stagnation/corner point is crossed’.

To finalize the analysis, we need to also complexify the free boundary into the lower
half-plane. This analogous process yields the functional complex conjugates of (4.11a)
and (4.11b), and thus the total leading-order contribution along the free surface is
given by twice the real parts of (4.11a) and (4.11b),

qexp,total ∼ 4π
εγ

Im(Qe−χ/ε), (4.13a)

θexp,total ∼ 4π
εγ

Im(Θe−χ/ε). (4.13b)

In order to fully determine the waves, we must also compute the values of the
pre-factor, Λ, that appears in (3.16) and (3.17) for Q and Θ , and also the value of
γ in (4.13). This can be done by matching the outer solution (3.1) with an inner
solution valid near each of the singularities. Although this was easily done for the
linear problem in Part 1, the nonlinear problem is much more tedious, and readers can
refer to Trinh (2010) for the detailed procedure.

5. Inner limits of χ and Stokes lines
In the low-Froude-number and low-Bond-number limits, we can think of the

exponentially small free-surface waves as having been generated by singularities in
the flow domain. For example, in the case of the step (2.6), both the corner and
stagnation points are responsible for producing waves through their associated Stokes
lines. Furthermore, we know from Dingle (1973) that Stokes lines with ©B > ©C or
©B > ©G , are given at points where the base series (with phase zero) reaches peak
exponential dominance over the capillary or gravity waves (with phase −χ/ε). This
yields the two conditions

Im(χ±)= 0 and Re(χ±)> 0, (5.1)

and for a given geometry, the trajectory of the Stokes lines can be derived by
numerically evaluating the integral (3.11) and applying conditions (5.1). Whether a
Stokes line encounters the free surface is a problem that thus depends on the global
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behaviour of q0; however, we can still study the local properties of the Stokes lines
near their associated singularities.

5.1. Local Stokes line analysis for general channel flows
Let us assume that there is a singularity in the outer solutions (3.1) at the points
z = z∗, w = w∗ and ζ = ζ ∗, which correspond to the different planes introduced in
figure 1. We introduce the shifted coordinate W = w − w∗, and then from potential
theory, W ∼ const× (z− z∗)κ for some κ; in the case of stagnation points, κ = 2, while
for corner singularities, κ = π/ν, where ν is the in-fluid angle of the corner. In the
analytic continuation of the free boundary, we have from the definition of the complex
velocity,

dw

dz
∼ q0e−iθ0 = q0 = const× (z− z∗)κ−1 = const×W (κ−1)/κ, (5.2)

and thus the inner limit of the outer solution is given by

q∼ c (w− w∗)α = cWα (5.3)

where α = (κ − 1)/κ and c is constant.
Using χ in (3.9) and the limiting form for q0 in (5.3), we see that χ must exhibit

different limiting behaviours as the singularity is approached, depending on which sign
of the square root is chosen and whether α is positive or negative:

χ± ∼



[
∓ ieArg(∆)/2

c
√
βτ(1− α)

]
W1−α ≡∓X1W1−α forα > 0[

− i
c3β(1− 3α)

]
W1−3α ≡ X2W1−3α for gravity (−) andα < 0[

− ic
τ(α + 1)

]
Wα+1 ≡ X3Wα+1 for capillary (+) andα < 0.

(5.4)

For α < 0, the choice of the negative sign for the square root leads to gravity waves,
whereas the positive sign is associated with capillary waves; this is clear from the
appearance of either β (gravity) or τ (capillary) in the coefficients of χ , but can also
be understood by taking τ → 0, and noticing that the capillary root in (3.8) disappears
to infinity, leaving only the gravity root.

There is a notable difficulty in determining the local behaviour of χ± in (5.4) when
α > 0, and this deals with the value of Arg(∆), which must tend to π or −π as we
approach the singularity from the upper half-ζ -plane. For the purpose of the Stokes
line analysis in the next section, it is sufficient to see that, for the case of the step
(2.5), if we approach the singularity from along the upstream fluid, then Im(q4

0 − A)
tends to zero from below as |W| → 0, and thus

eArg(∆)/2 =−i. (5.5)

We also mention that the assumption that the potential follows a power of (z− z∗) in
(5.2) will not be true for the case of a sink or source, where W ∼ const × log(z − z∗).
However, this analysis requires a somewhat different approach because the location
of the singularity corresponds to |w| → ∞. The problem of applying exponential
asymptotics to gravity flow past a submerged line source was studied by Lustri,
McCue & Chapman (2013).
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5.2. Local Stokes line analysis for the step

The existence of a Stokes line does not necessarily guarantee the appearance of
surface waves. Indeed there are cases where the associated Stokes line fails to intersect
the free surface, as well as cases where the line lies on a different Riemann sheet
altogether. In this section, we study the simplest scenario of a Stokes line which
emerges from its singularity in the ‘in-fluid’ direction of the upper half-ζ -plane.
Whether such a line actually encounters the free surface (ζ ∈ R+) is a global function
of the leading-order flow and, in general, must be checked by evaluating the integral in
(3.11). For the moment, we ignore lines that leave in a direction of ‘into’ the boundary
(Im(ζ ) < 0), and lines that enter secondary Riemann sheets. From a study of the global
contours of χ , we have observed that relevant interactions are generally governed by
Stokes lines that traverse simple paths (from singularity to free surface along the same
Riemann sheet). However, in § 7 and the Appendix, we shall see the role played by
more complicated Stokes line trajectories which cross onto different sheets.

Recall that the value of α in (5.3) determines the boundary’s geometry near the
singularity, with α < 0 for a corner and α > 0 for a stagnation point. The value of
c determines the orientation of the geometry, and this is not quite arbitrary because
gravity provides a reference direction. Again, let us consider the two singularities
associated with the step geometry in (2.6).

For the case of the corner, with α ∈ (−1, 0) and c ∈ R+, then in the notation of
(5.4),

χ± ∼
{|X2|e−πi/2W1−3α for gravity (−)
|X3|e−πi/2Wα+1 for capillary (+) (5.6)

as W→ 0. If we write ϑgrav = Arg(W) for the local angle of a gravity Stokes line, and
ϑcap for the local angle of a capillary Stokes line, then we have from (5.1) that

ϑgrav = π
(

2m+ 1/2
1− 3α

)
and ϑcap = π

(
2m+ 1/2
α + 1

)
, (5.7)

where m ∈ Z. As α increases from −1 to 0, the first (m = 0) gravity Stokes line
increases from ϑgrav = π/8 to π/2. In addition, the second (m = 1) gravity Stokes line
increases from ϑgrav = 5π/8 when α =−1 to ϑgrav = π when α =−1/2. However, as α
increases from −1 to 0, the only capillary Stokes line only enters the upper half-plane
beginning at α =−1/2, where ϑcap = π. As α increases to 0, ϑcap increases to π/2. By
taking the local analysis to next order in W, it can be shown in the case of the Stokes
line initially leaving along the boundary, ϑcap = π, it must continue along the boundary
until it encounters the stagnation point.

For the case of the stagnation point, with α ∈ (0, 1) and c= |c|e−πiα, then (5.4) gives

χ± ∼∓|X1|eπiαW1−α, (5.8)

as W→ 0 once we have used (5.5). The Stokes lines leave at angles of

ϑgrav = π
(

2m− α
1− α

)
and ϑcap = π

(
2m− 1− α

1− α
)
, (5.9)

for m ∈ Z. For gravity waves, there are no relevant Stokes lines lying in the upper
half-plane. For capillary waves, the only relevant value of m is 1, which shows that



New gravity–capillary waves. Part 2 403

Local power (α) Gravity Stokes
(vgrav)

Capillary Stokes
(vcap)

Physical sketch

−1
π

8
,

5π
8

None

G

G

(
−1,−1

2

) (π
8
,
π

5

)
,

(
π,

5π
8

)
None

G

G

−1
2

π

5
,π π

G

C, G

(
−1

2
, 0
) (π

5
,
π

2

) (
π,
π

2

) G
C

0
π

2
π

2

GC

(0, 1) None π

C

TABLE 1. A summary of the local behaviour of a Stokes line (shown dashed) as it emerges
from a singularity for which the complex velocity behaves like dw/dz ∼ c (w− w∗)α .
Angles ϑ are relative to the positive Re(w)-axis. Angles in the physical plane follow from
(5.10) and the solid arrow indicates the direction of flow.

there exists a Stokes line along θ = π for all shapes. However, a secondary analysis to
next order in W shows that the Stokes line which initially tends along ϑcap = π does
indeed leave the boundary into the upper half-plane.

The local Stokes line angles in the physical plane can be retrieved by using (5.2)
and (5.3). If z= z∗ is the corresponding singularity, then

z− z∗ ∼
[

1
c(1− α)

]
W1−α. (5.10)

In summary, given a step-up obstruction with initial inclination σπ, the following
occurs: first, the stagnation point always produces a capillary Stokes line; second, the
corner always produces a gravity Stokes line, and only produces a capillary Stokes
line if σ > 1/2. Table 1 provides an illustration of our local Stokes line analysis. Note
that at α = 0, there is no singularity, so the corresponding entry instead refers to the
limiting process of α→ 0−.
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6. Turning points and Stokes lines for the step
The singularities encountered in § 5 are not the only critical points in the

gravity–capillary problem. From (3.10), the turning points, ζ = ζT , found at

∆= q4
0 − A= q4

0 −
4τ
β
= 0, (6.1)

also represent a type of wave-generating singularity. These points do not share a
connection with the physical geometry but, rather, they correspond to locations where
derivatives of the capillary and gravity wavenumbers are equal. By drawing an analogy
with the Airy equation (White 2005, chap. 11), we would expect that these turning
points can also produce Stokes lines, across which gravity and capillary waves can
themselves interact.

Care must be taken in solving ∆ = 0, however, since this generally involves the
inversion of composite complex-valued functions with multiple branch cuts. In the case
of the step flow (2.6), for example, since A> 0, all the possible solutions are given by(

ζT + b

ζT + a

)
= A1/4σe2πik/4σ . (6.2)

Different values of k ∈ Z in (6.2) may correspond to different turning points, but we
must always check (a posteriori) that the final location lies on the main Riemann sheet
(i.e. where q0 is real and positive on ζ ∈ R+). Like the previous Stokes line analysis of
§ 5.2, we only consider points on this immediate sheet; numerical computations of the
global contours of χ seem to indicate that critical points that lie on secondary sheets
do not affect the free surface (though there are exceptions: see the Appendix).

There are three important turning points in (6.2), which we denote as ζT = ζ1, ζ2

and ζ3, corresponding to k = 0, 1 and −1, respectively. Their locations for various
values of σ and A are shown in the main portion of figure 2. Recall that the upper
half-ζ -plane shares a connection with the z-plane, and we have illustrated the physical
connection within the insets (a–f ). Note that we have taken the branch cut, marked by
a double line, along the real axis in the ζ -plane, between the corner and stagnation
points.

First consider the two complex turning points, ζ2 and ζ3. For a fixed values of A and
σ > 0.5, the point ζ2 lies somewhere above the real axis, and ζ3 is its conjugate. For
fixed σ and as A→ 0, ζ2 tends to the stagnation point, while if A→∞, ζ2 tends to
the corner point. This motion for variable A is shown as a solid curve in figure 2. On
the other hand, if A is fixed and σ → 0.5, ζ2 moves towards the branch cut, so that
at σ = 0.5, ζ2 lies directly on the angled step, while ζ3 has moved onto the adjacent
Riemann sheet. If σ < 0.5, then both ζ1 and ζ3 are now on secondary sheets. This
motion for variable σ is shown as the dashed line in the figure, and through the insets
(a)–(c).

The turning point, ζT = ζ1, is real for all values of σ and A. When A = 0, ζ1 lies
on top of the stagnation point, and as A→∞, ζ1 moves leftwards along the real
ζ -axis towards the corner point by passing through |ζ | = ∞ and traversing the free
surface. There are two special points: A = 1 (when ζ1 has reached infinity upstream),
and A = (b/a)4σ (when ζ1 has reached infinity downstream). This is illustrated for the
case of a rectangular step in figure 2, and insets (d)–(f ).

6.1. Inner analysis and reduction to the Airy equation
Turning points are important for two reasons: first, a turning point which lies on
the free surface, as in the case of A > 1, produces a change in one of or both the
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FIGURE 2. Movement of the turning points, ζ1, ζ2, ζ3 for the step with b = 2 (stagnation
point) and a = 1 (corner). Exact values are shown in the ζ -plane and the insets provide
depictions in the physical plane. The ζ1 points are black squares, and ζ2,3 are grey squares. For
fixed values of A and decreasing values of σ (thus fixing the flow parameters, but changing
the geometry), the different values of ζ2 and ζ3 are shown as a dashed line in the main
illustration and through insets (a–c). Similarly, for changing values of A and fixed values of σ
(thus changing the flow parameters, but fixing the geometry), the values of ζ2,3 are shown as a
solid line in the main illustration, and through insets (d–f ). Note that for σ < 0.5, both ζ2 and
ζ3 have passed onto the adjacent Riemann sheets, so they have disappeared from the physical
illustration (c).
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gravity and capillary waves from constant-amplitude oscillations to exponential decay
(cf. Re(dχ/dw) in (3.9)); second, turning points also generate Stokes lines and can
thus lead to the birth of new exponentials. Recall from (4.11b) that, upon crossing the
©B >©G or ©B >©C Stokes line from ζ = ζ ∗, the base series switches on the exponential

qexp =−2πiQ±(ζ )
εγ

exp
[
−1
ε

∫ ζT

ζ∗

dχ±
dζ ′

dζ ′
]

exp
[
−1
ε

∫ ζ

ζT

dχ±
dζ ′

dζ ′
]
, (6.3)

which we have written so that the integration passes through an arbitrary turning point,
ζ = ζT . The Stokes lines from the turning points are given at locations where one
exponential (e.g. gravity) possesses the same phase, and also reaches peak exponential
dominance over the other (e.g. capillary). Thus,

©G > ©C : Re
[
−
∫ ζ

ζT

dχ−
dζ ′

dζ ′
]

> Re
[
−
∫ ζ

ζT

dχ+
dζ ′

dζ ′
]
, (6.4a)

©C > ©G : Re
[
−
∫ ζ

ζT

dχ+
dζ ′

dζ ′
]

> Re
[
−
∫ ζ

ζT

dχ−
dζ ′

dζ ′
]
. (6.4b)

As ζ → ζT , it is easy to verify from (6.2) that the turning points are simple, and so we
may write

∆∼ D(ζ − ζT), (6.5)

where D ∈ C. Also, from (3.15) and (3.16), we have that

Q± ∼ B±
(ζ − ζT)

1/4 (6.6)

where B± is constant. We now write (6.3) in a form that makes the connection to the
Airy equation apparent. We introduce

H±(ζ )≡−2πi
εγ

(ζ − ζT)
1/4 Q± exp

[
−1
ε

∫ ζT

ζ∗

dχ±
dζ ′

dζ ′
]
, (6.7)

so H± tends to a constant near the turning points. We also split the real and complex
parts of χ in (3.11) with dχ±/dζ = (S1 ± iS2), where

S1(ζ )=− iq0(
dw

dζ

)
2τ

and S2(ζ )=−
√
∆(

dw

dζ

)
2τq0

(6.8)

and dw/dζ = −1/ζ is given by (2.4) for the particular case of a channel geometry.
The expression for qexp in (6.3) can now be written as

qexp =
[

H± exp
(
−1
ε

∫ ζ

ζT

S1 dζ ′
)] exp

(
∓ i
ε

∫ ζ

ζT

S2 dζ ′
)

(ζ − ζT)
1/4 . (6.9)

Following the discussion of § 6, we shall assume that ζ = ζT is a first-order turning
point (although this may not be true of all possible geometries specified by q0). If we
wish, we could re-scale q and ζ near ζ = ζT in order to remove the square-bracketed
pre-factor of (6.9). The governing equations (2.2a)–(2.2b) would then reduce to an
Airy equation (cf. Bender & Orszag 1978), for which we can perform the local Stokes
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line analysis. However, it is faster to apply the following shortcut: using the local
expression for ∆ in (6.5), and combining with (6.7)–(6.9) gives

qexp ∼ H±(ζT)
exp[∓(p/ε) (ζ − ζT)

3/2]
(ζ − ζT)

1/4 , (6.10)

valid in the limit ζ → ζT , where p ∈ C is a constant that depends on ζT .
We then note that the Airy switching requires

exp[∓(p/ε) (ζ − ζT)
3/2]

(ζ − ζT)
1/4

Turning Point−−−−−−→
©C ≷©G

exp[∓(p/ε) (ζ − ζT)
3/2]

(ζ − ζT)
1/4

+iM
exp[±(p/ε) (ζ − ζT)

3/2]
(ζ − ζT)

1/4 , (6.11)

that is, the dominant wave switches on the subdominant wave with a Stokes multiplier
of i (White 2005, chap. 11). The quantity M = ±1 inserts a sign that depends on
the direction of analytic continuation past the Stokes line (the standard Airy equation,
for example, has M = 1 for analytic continuation in the counter-clockwise direction,
relative to the turning point).

In terms of the outer variables, q, this shows that as we analytically continue across
a Stokes line from the turning point at ζ = ζT , the already existent capillary/gravity
wave in (6.3),

qexp =
[
−2πiQ±

εγ

]
exp

[
−1
ε

∫ ζ

ζ∗

dχ±
dζ ′

dζ ′
]
, (6.12)

switches on a gravity/capillary wave, which satisfies the transition rule:

qexp
Turning Point−−−−−−→
©C ≷©G

qexp + iM
[
−2πiQ∓

εγ

] [
B±
B∓

]
× exp

[
−1
ε

(∫ ζT

ζ∗

dχ±
dζ ′

dζ ′ +
∫ ζ∗

ζT

dχ∓
dζ ′

dζ ′
)]

× exp
[
−1
ε

∫ ζ

ζ∗

dχ∓
dζ ′

dζ ′
]
, (6.13)

where B± is given by (6.6). We have written the integrals in (6.13) so as to emphasize
the turning-point process. Notice that the last exponential in (6.13) clearly indicates
the presence of a gravity/capillary wave ((6.12) with a negated exponential). The first
two integrals of (6.13), however, show that the original capillary/gravity wave was
generated from ζ ∗ on the ± branch, went around the turning point ζT , and returned
to ζ ∗ along the ∓ branch. The values of most of the quantities (e.g. Q±, B± and M)
will not be necessary for the following discussion, but can be numerically computed if
required.

7. New solutions for the rectangular step (σ = 1/2)
In the spirit of King & Bloor (1987) and Chapman & Vanden-Broeck (2006), we

now study the simplest case for a non-trivial step: the rectangular geometry. In Part 1
of our work, it was shown that for the case of a linearized step of small height, two
solutions are possible at small Froude and Bond numbers: one with capillary waves
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FIGURE 3. Positions of the two turning points (7.1) as a function of A= 4τ/β for the case of
a rectangular step with a = 1 and b = 2. The T1 turning point at ζ = ζ1 is shown as the thick
line, and the T2 turning point at ζ = ζ2 is the thin one.

upstream and gravity waves downstream, and the other with localized solitary waves
with decaying oscillations in the far field. Furthermore, this bifurcation arises because
the capillary and gravity Stokes lines coalesce.

However, for the nonlinear step, there is the added subtlety in the form of the
turning points. As we know from § 6, turning points not only change constant-
amplitude waves to exponential decay, but also switch on secondary gravity or
capillary waves. For the rectangular step, the two turning points are given by (6.2),
simplified to

ζ1 = −b+ a
√

A

1−√A
and ζ2 = −b− a

√
A

1+√A
, (7.1)

and these are shown in figure 3 for the step with a = 1 and b = 2. Immediately,
we recognize that there are at least three regions of interest: (i) both turning points
on the solid boundary for 0 < A < 1; (ii) one point on the surface and one on the
solid boundary for 1 < A < (b/a)2; and both points back on the solid boundary for
A> (b/a)2.

In addition to these three regions, we must also note the positions of the Stokes
lines relative to the turning points. It will be useful to introduce the following labels:

C: Capillary Stokes line from stagnation point, ζ =−b.
G: Gravity Stokes line from corner point, ζ =−a.

T1 and T1: Capillary/gravity Stokes line from first turning point, ζ = ζ1.
T2: Capillary/gravity Stokes line from second turning point, ζ = ζ2.

The underline, T1, is used to distinguish when the first turning point lies on the bottom
boundary and the overline, T1, for when it lies on the free surface.
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Next, examine the six subplots on figure 4(b), corresponding to six regions labelled
1 to 6 in figure 3. These subplots indicate the qualitative arrangement of the turning
points and Stokes lines for various values of A > 0. Solution types are then classified
by a sequence of labels, indicating the events as we traverse the free surface from left
to right (in the downstream direction). For example, a sequence like

T1 · T2 · C · G (7.2)

in Region 1 corresponds to traversing the free surface in the downstream direction, and
crossing: (i) the T1 Stokes line; (ii) the T2 Stokes line; (iii) the capillary Stokes line
from the stagnation point; and (iv) the gravity Stokes line from the corner.

Similarly, a sequence like

C · T1 · G (7.3)

in Region 4 corresponds to: (i) crossing the C-line; (ii) crossing the T1 point on the
free surface; and then (iii) crossing the G-line.

The sequence of subfigures in figure 4(b) thus indicates that in the low-Froude-
number, low-Bond-number limit, there are six possible solution types. Examine now
the βτ -plane shown in figure 4(a). The extremum cases 1 and 6 correspond to the
standard linearized solutions of Part 1 and confirms that the grey region of figure 3,
which corresponds to 1 < A < (b/a)2, is further subdivided into 2–5. Thus, this figure
shows that the usual dispersion ‘line’ which differentiates Rayleigh’s two scenarios
actually contains a series of solutions 2–5; the line’s thickness and these new solutions
are a manifestation of the nonlinearity (and largeness) of the step. As the step height
tends to zero, the line thickness tends to zero and we recover the standard linear
picture.

Remember that the physical sketches in figure 4(b) are only illustrative projections
of the Stokes lines from the upper half-ζ -plane onto the physical domain (see figure
2 of Part 1). The reader should not forget that in crossing a Stokes line along the
free surface, a wave contribution due to the singularities in the lower half-ζ -plane also
switch on; indeed the sum of these two contributions was used to derive (4.13).

In the following discussion, it is sufficient to only consider the wave contributions
from the upper half-ζ -plane. We shorten the notation for the arguments of the
exponentials in (4.11b) and (6.13) by expressing the integrals relative to either the
stagnation point, ζ =−a, or the corner point, ζ =−b. Thus

Xcap =−1
ε

∫ ζ

−a

dχ−
dζ ′

dζ ′ and Xgrav =−1
ε

∫ ζ

−b

dχ+
dζ ′

dζ ′. (7.4)

We also denote the pre-factors for the exponentials by a calligraphic letter with a
subscript, if applicable, which corresponds to an interaction with a turning point. This
leads to the three symbols:

A: An arbitrary wave amplitude to be determined.
C: A capillary wave amplitude generated from the stagnation point.
G: A gravity wave amplitude generated from the corner point.

Here are three examples:

(i) GeXgrav , (ii) AT1T2
eXcap, (iii) (A+ C)T1

eXgrav . (7.5)

Example (i) denotes a gravity wave with amplitude G switched on after crossing the
Stokes line from the corner. Example (ii) is constructed in a two-step process: an
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FIGURE 4. The six regimes of interest for flow over a rectangular step, as shown in the
βτ -plane (a) for the case of a = 1 and b = 2. The grey strip is bounded by A = 1 and
A = (b/a)2, which thickens for larger and larger steps. The arrangement of Stokes lines and
turning points is shown in (b). Stagnation and corner points are circular nodes and turning
points are square nodes. The arrangement in Region 6 is complicated and will be discussed in
§ 7.6.

(arbitrary) capillary wave with amplitude A encounters a turning point and switches
on a gravity wave with amplitude AT1

, then encounters the second turning point
and switches on a capillary wave with amplitude AT1T2

. Example (iii) is constructed
by beginning with a capillary wave with combined pre-factors A and C (the former
an arbitrary quantity, and the latter generated from the stagnation point), and then
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switching on a gravity wave due to the T1 turning point. Our notation and the
associated expressions will be made clear in the many examples and figures to follow.

7.1. Region 1 with T1 · T2 · C · G
Consider the case of A < 1. For most (larger) values of τ , as we analytically continue
across the free surface, the sequence of events is T1 · T2 · C · G, which involves the T2

Stokes line crossing the C Stokes line. In fact, for extremely small values of τ , the
lines may not actually cross, and so the sequence is T1 · C · T2 · G; however, both cases
are equivalent because, as we shall see, the turning points do not play any role in
determining the free surface.

In order to derive the correct wave expressions, we traverse the free surface, from
left to right, beginning with a wave that satisfies the upstream radiation condition
(i.e. a capillary wave). Upon reaching the end, we apply the downstream radiation
condition, and this process provides us with a complete set of fully-determined waves.
If we start with an arbitrary upstream capillary wave AeXcap , then the sequence of
events is

AeXcap
T1−−−→
©G>©C

AeXcap

T2−−−→
©G>©C

AeXcap

Stag.−−−→
©B>©C

(A+ C)eXcap

Corn.−−−→
©B>©G

(A+ C)eXcap + GeXgrav . (7.6)

There are no capillary waves downstream, so A+ C = 0, and the final solution has

−CeXcap
Stag.−−−→
©B>©C

0
Corn.−−−→
©B>©G

GeXgrav , (7.7)

where the pre-factors, C and G, are given by the jump condition (4.11b), with

C =−2πiQ+
εγC

and G =−2πiQ−
εγG

(7.8)

and Q± is computed from (3.15) and (3.16). For the rectangular step, it can be shown
by matching inner and outer solutions that γC = 0 and γG = 6/5. In the end, the free
surface resembles the standard linearized solution with capillary waves upstream and
gravity waves downstream, but now, with a wave-free region near the centre, similar to
what occurs in Part 1 of our work. The result is sketched in figure 5(a). Note that the
Stokes lines from the turning points remain inactive.

In some problems, the intersection of Stokes lines can lead to more subtle effects,
such as the higher-order Stokes Phenomenon (see for example, Howls et al. 2004).
A simple consistency check is to analytically continue in a closed path around the
intersection point, and to see if the solution returns to its original value. In this
case, we see that the T2 Stokes line remains inactive, and so the intersection of the
©B > ©C and ©G > ©C lines is not a concern. This will not be the case for the solution in
Region 6.

7.2. Region 2 with T1 · T2 · C · G
As τ is increased and β held steady, the T1 turning point moves upstream along the
solid boundary and reaches −∞ at A = 1. Solutions in Region 2 have A > 1 and the
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FIGURE 5. Sketch of gravity–capillary solutions in Regions 1–3. Waves sketched with the
larger amplitudes are switched on by the stagnation point or corner; waves sketched with
smaller amplitudes are switched on by turning points. Note that the gravity and capillary
waves differ in both amplitude and wavelength, but we have not illustrated this difference: (a)
Region 1 with T1 · T2 · C · G; (b) Region 2 with T1 · T2 · C · G; (c) Region 3 with T1 · C · G.

turning point T1 has now moved onto the free surface and travels downstream as τ
is further increased. The turning point on the free surface also implies that upstream
waves will now decay, but downstream waves will remain constant. We start with an
arbitrary upstream capillary wave AeXcap , and the sequence of events is:

AeXcap
T1−−−−→

©G ≷©C
AeXcap +AT1

eXgrav

T2−−−→
©G>©C

(A+AT1T2
)eXcap +AT1

eXgrav

Stag.−−−→
©B>©C

(A+AT1T2
+ C)eXcap +AT1

eXgrav

Corn.−−−→
©B>©G

(A+AT1T2
+ C)eXcap + (AT1

+ G)eXgrav . (7.9)

The last transition is known by (4.11b), so G is again given by (7.8). Since there are
no capillary waves downstream, and C is provided by the jump condition in (4.11b),
then

C =−A−AT1T2
=−2πiQ+

εγC
. (7.10)
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We can associate the pre-factor A with the stagnation point, writing

A(ζ )=
[
−2πiQ+

εγC

]
Â(ζ ), (7.11)

for some unknown function, Â(ζ ). The pre-factor, AT1
, of the first gravity wave

switched on by the T1 turning point is given by the transition rule (6.13), and this
allows us to relate Â to AT1

. Care must be taken to express the gravitational wave
quantities with respect to the corner, instead of the stagnation point (see the definition
of Xgrav in (7.4)). Next, the pre-factor, AT1T2

, of the second capillary wave switched on

by the T2 turning point is also given by (6.13), which relates Â to AT1T2
. Lastly, (7.10)

and (7.11) allow A to be solved entirely in terms of Q± and thus all quantities can be
determined.

Therefore, far upstream we have a decaying capillary wave, while far downstream
we have a constant gravity wave. Also switched on after encountering the T1 turning
point is a (doubly) exponentially small gravity wave, which continues downstream.
Finally, there is an even smaller capillary wave which has been turned on by the
gravity wave across the T2-line. This is illustrated in figure 5(b), and in summary,

AeXcap
T1−−−−→

©G ≷©C
AeXcap +AT1

eXgrav
T2−−−→
©G>©C

(A+AT1T2
)eXcap +AT1

eXgrav

Stag.−−−→
©B>©C

AT1
eXgrav Corn.−−−→

©B>©G
(AT1
+ G)eXgrav . (7.12)

In contrast to Region 1, the T2 line is now active, but the intersection of the two
Stokes lines remains unproblematic; we can still analytically continue in a closed path
around the intersection point and return to our original value.

We note that the solutions in this region are actually contained in a rather small
section of βτ -space (as shown in figure 4). Once T1 has crossed the point that marks
the intersection of the T2 line and the free surface, a bifurcation occurs and the T2

line tends to w = −∞ without intersecting the free surface; this can be verified by
numerical integration.

7.3. Region 3 with T1 · C · G
In Region 3, the only difference to the previous region is that the T2-line tends to
w = −∞ without intersecting the free surface. Starting with an arbitrary upstream
capillary wave, AeXcap , the sequence of events is now:

AeXcap
T1−−−−→

©G ≷©C
AeXcap +AT1

eXgrav

Stag.−−−→
©B>©C

(A+ C)eXcap +AT1
eXgrav

Corn.−−−→
©B>©G

(A+ C)eXcap + (AT1
+ G)eXgrav . (7.13)
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The downstream radiation condition requires C =−A. Like the previous regions, (7.8)
provides the expressions for C and G, and (6.13) relates A to AT1

. The final result is

AeXcap
T1−−−−→

©G ≷©C
AeXcap +AT1

eXgrav

Stag.−−−→
©B>©C

AT1
eXgrav Corn.−−−→

©B>©G
(AT1
+ G)eXgrav . (7.14)

Thus the only difference between the solutions in Regions 2 and 3 is that in the latter,
the doubly-exponentially-small capillary wave has disappeared from the free surface. A
sketch of the solution is shown in figure 5(c).

7.4. Region 4 with C · T1 · G
For A still larger, T1 eventually crosses the intersection point between the C-line and
the free surface, and then the sequence is then C · T1 · G. If we start with an arbitrary
upstream capillary wave AeXcap , the sequence of events is

AeXcap
Stag.−−−→
©B>©C

(A+ C)eXcap

T1−−−−→
©G ≷©C

(A+ C)eXcap + (A+ C)T1
eXgrav

Corn.−−−→
©B>©G

(A+ C)eXcap + ((A+ C)T1
+G)eXgrav . (7.15)

Again, we cannot have capillary waves downstream, so A+ C = 0, and the coefficients,
C and G, are given by (7.8). The final result is

−CeXcap
Stag.−−−→
©B>©C

0
Corn.−−−→
©B>©G

GeXgrav . (7.16)

The solution is sketched in figure 6(a), and we see that it consists of a decaying
capillary wave upstream and a constant-amplitude gravity wave downstream.

7.5. Region 5 with C · G · T1

Eventually, T1 passes the point where the G-line intersects the free surface, and
so downstream from this point, the gravity waves switch from constant-amplitude
to exponentially decaying oscillations. For solutions in this region, it is easier to
analytically continue from downstream to upstream, and negate each of the transitions
(since the rules (4.11b) and (6.13) are written for continuation in the downstream
direction). If we start with an arbitrary downstream gravity wave AeXgrav , the sequence
follows

AeXgrav
T1←−−−−

©G ≷©C
−AT1

eXcap +AeXgrav

Corn.←−−−
©B>©G

−AT1
eXcap + (A− G)eXgrav

Stag.←−−−
©B>©C

(−AT1
− C)eXcap + (A− G)eXgrav . (7.17)

We impose the requirement that there are no gravity waves downstream, so A− G = 0.
The values C and G are given in (7.8), and A and AT1

are related through (6.13). The
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FIGURE 6. Sketch of gravity–capillary solutions in Regions 4–6. The solution in Region 6
should correspond to the second of Rayleigh’s linearized profiles, but is complicated by the
two crossing Stokes lines. In the Appendix, we demonstrate the existence of a third Stokes
line (dashed), which originates from a secondary singularity (black circle): (a) Region 4 with
C − T1 · G; (b) Region 5 with C · G · T1; (c) Region 6 with C · G.

final result is given by (from left to right)

(−AT1
− C)eXcap

Stag.−−−→
©B>©C

−AT1
eXcap Corn.−−−→

©B>©G
−AT1

eXcap +AeXgrav
T1−−−−→

©G ≷©C
AeXgrav . (7.18)

The solution is shown in figure 6(b), where we see it consists of two decaying
capillary waves upstream, and a gravity wave downstream. The gravity wave, which is
first switched on by the Stokes line from the corner, decays until it reaches the turning
point, and then switches to a constant-amplitude wave downstream.

7.6. Region 6 with C · G
Once A = (b/a)1/2, the T1 point has reached w =∞ and for larger values of A, the
turning point begins to move from right to left along the downstream solid boundary.

There is one issue which needs to be addressed: in figure 6(c), the ©B > ©G line
intersects the ©G >©C line at a Stokes Crossing Point or SCP. If we analytically continue
in a path that encircles the SCP, then we find that in order to avoid an inconsistency,
the base solution must switch off a capillary wave somewhere along the path; in other
words, there must be a ©B > ©C line, which goes through the SCP. However, neither the
corner, nor the stagnation point, produces such a Stokes line.
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This issue is addressed in the Appendix, where we discuss three key ideas: (i) there
is a second singularity (marked by the black circle in figure 6c). This singularity does
not appear in any of the early terms (3.2a)–(3.2d), but represents a singularity in the
late terms of the late terms. It lies on the adjacent Riemann sheet from the originally
defined corner point, ζ = a, and can be detected by setting χ = 0, where from (3.9)

χ =−i
∫
Γ

[
q2

0 −
√
∆

2τq0

]
dϕ. (7.19)

The contour Γ begins at ζ = a, crosses the branch cut from the turning point, T1, and
continues along the secondary Riemann sheet of

√
∆.

In the Appendix, we also establish that (ii) the secondary singularity produces a
©B > ©C Stokes line that crosses the SCP (shown dashed in figure 6c). Finally, (iii) the
portion of the ©B > ©C line that joins the SCP to the singularity must be inactive; this
switching-off of a Stokes line is due to the higher-order Stokes Phenomenon. These
more complicated issues of secondary singularities, Stokes crossing points, and the
higher-order Stokes Phenomenon, have been studied by others in a variety of different
situations (see for example Berk, Nevins & Roberts 1982; Howls et al. 2004; Olde
Daalhuis 2004; Chapman et al. 1999; Chapman & Mortimer 2005; Chapman et al.
2007).

The solution is then

(−C + GT1)e
Xcap

Stag.−−−→
©B>©C

GT1eXcap
Sec. Sing.−−−−→
©B>©C

0
Corn.−−−→
©B>©G

GeXgrav , (7.20)

where the values of C and G are given by (7.8). The pre-factor GT1 reminds us that the
capillary wave is switched on by taking the G gravity wave and crossing the Stokes
line from the turning point; its value can be computed from (6.13). These doubly
exponentially small capillary waves are switched off downstream upon crossing the
Stokes line from the secondary singularity.

Decaying waves on either side of the step are exactly what we expect from the
linear analysis, but we see that the result is not quite the same as in the linearized
theory due to the presence of the doubly-small capillary waves upstream. The free
surface is shown in figure 6(c). However, we note that, as for the case of pure gravity
waves (see Chapman & Vanden-Broeck 2006), we would expect a distinguished limit
in the small-Froude-number, small-Bond-number, and small-step-height limits. Thus
relating the results here with the work in Part 1 is not likely to be a trivial problem.

8. Discussion
Now having reached the end of our work on the gravity–capillary problem, we have

one final query: do these new waves truly exist?
Our theoretical predictions form a first attempt at exploring the previously unknown

region of low Froude and low Bond numbers. Our results posit the existence of six
different families of waves for flow over a step (Regions 1–6 in figure 4), and reveal
that the usual dispersion curve separating linear solutions 1 and 6 widens if we include
the nonlinear nature of the geometry. While this structure is only valid at low Froude
and low Bond numbers, it also sheds new light on the general complexity of the
gravity–capillary problem, which has been freely acknowledged in the past.

Many open questions remain, some of which may ultimately hold the key to
detecting these new waves (or discounting their existence). Throughout this work,
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we have provided a clear analysis of the local issues of the gravity–capillary problem.
For example, we have shown how the emergence of a Stokes line depends on the
local angle of the obstruction, or how the switching-on of waves near turning points
can be predicted via an Airy-like transition. Although we have not shown the tedious
calculations, the crucial pre-factor in (3.15), Λ, is another local issue, and can be
derived by matching inner and outer solutions near the singularities (see Trinh 2010
for more details). But what about the global properties of the Stokes lines?

For example, can a Stokes line emerge from a singularity along a secondary
Riemann sheet, only to later return to the primary sheet and intersect the free
surface? Our analysis in the Appendix attempted to answer this question by drawing
a comparison with a similar problem containing multiple singularities and crossing
Stokes lines; we then used these results to propose the likely free-surface configuration
for the complicated situation of Region 6 of figure 6(c). However, a more rigorous
treatment of these issues remains an open problem.

Equally fascinating is the myriad configurations that now seem possible for free-
surface gravity–capillary flows over different geometries. A classic question is to
inquire whether there are special geometries for which leading-order wave cancellation
occurs and where, for example, the waves produced by one singularity cancel the
waves produced by another. Although these issues regarding variable geometries have
been studied in the context of pure gravity or capillary waves (Chapman & Vanden-
Broeck 2002; Trinh et al. 2011; Lustri et al. 2012; Trinh & Chapman 2013a),
a catalogue of the wave configurations for different geometries in the combined
gravity–capillary case is a subject of future work.

Finally, the most significant question is why have these waves not been previously
detected? From the perspective of numerical simulations, one plausible difficulty
concerns the so-called radiation problem: it is unclear how the upstream radiation
condition can be accurately implemented in a numerical scheme. This difficulty is
highlighted in, for example, the works of Forbes (1983), Scullen (1998) and Grandison
& Vanden-Broeck (2006). For gravity–capillary flow past a large obstruction, the
resultant solutions are influenced by the chosen treatment of the far field, and it
is possible that inherent errors in current numerical methods make it difficult to
differentiate between the structure of our new gravity–capillary waves and the typical
linearized solutions. Do these waves truly exist? Our theoretical results suggest that
they do; the search for such configurations, either in nature or in the digital world,
forms the basis of ongoing investigation.

Appendix. On the crossing of Stokes lines
We address the issue of the crossing of Stokes lines in the gravity–capillary problem

by drawing an analogy with the same phenomenon which occurs in a modified Airy
equation:

ε2y′′ = xy+ ex/ε

x− a
. (A 1)

This equation was chosen because it not only possesses an (Airy) turning point at
x= 0, but also an additional singularity at x= a. Writing y= vex/ε gives

ε2v′′ + 2εv′ + (1− x)v = 1
x− a

, (A 2)
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where we also require v → 0 as |x| → ∞. We can now perform the standard
asymptotic analysis of (A 2), expanding v =∑ εnvn, and giving the first two orders as

v0 = 1
(1− x)(x− a)

, (A 3)

v1 =− 2

(1− x)3(x− a)
+ 2

(1− x)2 (x− a)2
, (A 4)

and in general, for n > 2,

vn =− 1
1− x

[v′′n−2 + 2v′n−1]. (A 5)

As n→∞, we expect the singularities at x = 0 and x = a to produce factorial-over-
power divergence of the late terms. Substituting the ansatz

vn ∼ V(x)0(n+ γ )
[χ(x)]n+γ , (A 6)

into (A 5) gives (χ ′)2−2χ ′ + (1− x)= 0, or solving yields

χ =
∫ x

1± s1/2 ds. (A 7)

There are clearly singularities at x = 1 and x = a, and we shall focus on the
exponentials generated by the latter. At a Stokes line emerging from the singularity
at x = a, the base series can switch on exponentials of the form e−χ/ε with χ being
one of

χ1 = x+ 2
3 x3/2 − a− 2

3 a3/2, (A 8)

χ2 = x− 2
3 x3/2 − a+ 2

3 a3/2. (A 9)

If we use ©B to denote the base series, and ¬ and ­ for the two exponentials, then
the Stokes Phenomenon describes the process in which ©B > ¬ or ©B > ­. However,
there is also a turning point at x = 0, for which the associated Stokes lines can cause
interactions between the two exponentials. If ¬>­, then this produces an exponential
with

χ3 = x− 2
3 x3/2 − a− 2

3 a3/2, (A 10)

since the Airy transition simply requires switching the branch of x3/2. Similarly, if
­>¬, this produces an exponential with

χ4 = x+ 2
3 x3/2 − a+ 2

3 a3/2. (A 11)

The Stokes lines for the case a = −1 + i are shown in figure 7(a). Notice that the
©B > ¬ Stokes line intersects the ¬ > ­ line at a Stokes crossing point (SCP). If
we analytically continue in a circle around the SCP, we see that a third Stokes line,
with ©B > ­, is needed in order to avoid an inconsistency. From (A 10), this seems to
require a singularity at the point x = x∗, where χ3 = 0; for a = −1 + i, the singularity
lies at x∗ ≈−1.423−0.509i. There is a similar singularity at x≈ 0.249+0.883i, where
χ4 = 0, which we associate with a ©B > ¬ line. The curiosity, however, is that these
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FIGURE 7. Stokes lines in the complex x-plane, shown with two different choices of branch
cuts (a andb). White circles denote the singularities at x = a and x = 1, black circles are the
secondary singularities, and a square denotes the turning point. The Stokes lines from x = 1
are not drawn. Branch cuts are shown as a double line, and the dashed lines are used to
indicate points on a secondary Riemann sheet. Background contours are for |χ3| (a) or |χ1|
(b), with darker regions indicating smaller values.

singularities do not appear anywhere in the base series, ©B , and so they do not seem to
be associated with any eventual divergence.

To explore this in more detail, we define the Fourier transform as

v̂(k)= 1√
2π

∫ ∞
−∞
v(x)eikx dx, (A 12)

and take the transform of (A 2), giving

iε2k2v̂ − 2εkv̂ − iv̂ + dv̂
dk
=√2πeiakH(k), (A 13)

where H(k) is the Heaviside function, and we have assumed that Im(a) > 0. Solving
this equation yields

v̂ =√2π exp
[−iε2k3

3
+ εk2 + ik

] ∫ k

0
exp

[
iε2u3

3
− εu2 − iu+ iau

]
du, (A 14)

or once inverted,

v =
∫ ∞
−∞

exp
[−iε2k3

3
+ εk2 + ik − ikx

] ∫ k

0
exp

[
iε2u3

3
− εu2 − iu+ iau

]
du dk. (A 15)

We rescale k = s/ε and u= w/ε, giving

v =
∫ ∞
−∞

exp
[
−φ(s; x)

ε

] ∫ s

0
exp

[
φ(w; a)
ε

]
dw ds, (A 16)

where we have defined

φ(w; a)= iw3

3
− w2 − iw+ aiw. (A 17)
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In the limit ε → 0, the dominant contributions of the innermost integral in (A 16)
come from the end points at w = 0 and w = s, or at the two saddle points at
w=−i± i

√
a. Thus (A 16) can be approximated as a sum of integrals of the form∫ ∞

−∞
A(s)eψ(s)/ε ds, (A 18)

where ψ is one of

ψ(s)=


is(a− x) (A 19)

− is3

3
+ s2 + is− isx (A 20)

− is3

3
+ s2 + is− isx− 1

3
+ a± 2a3/2

3
. (A 21)

Approximating the integral (A 18) using (A 19) recovers the base series (A 3)–(A 4).
The second and third expressions for ψ have saddle points at s=−i± i

√
x. Using the

second expression (A 20), we see that the integral (A 18) produces contributions e−χ/ε

with

χ =− 1
3 + x± 2

3 x3/2. (A 22)

One of these comes from the singularity at x = 1; the other comes from the same
singularity, and then going around the turning point.

Finally, approximating the integral at the saddle points using the third expression for
ψ in (A 21), gives four possible expressions for χ . Two of these are directly from the
singularity at x = a, and return χ1 and χ2 from (A 8)–(A 9). The other two, returning
χ3 and χ4 in (A 10)–(A 11), are generated by the same singularity, but involve an
integration contour which goes around the turning point. This verifies that the missing
Stokes line should be there, though it does not shed much light on the mysterious
singularity, x= x∗.

Let us go back to the expansion. We can write the nth term, vn, from (A 5) as

vn =
n+1∑
k=1

2n∑
m=0

ak,m

(x− a)k (1− x)m
, (A 23)

with ak,m given by

ak,m = 2(k − 1)ak−1,m−1 − 2(m− 2)ak,m−2 − (k − 2)ak−2,m−1 − (k − 2)2 ak−2,m−1

+ 2(k − 1)(m− 2)ak−1,m−2 − (m− 3)ak,m−3 − (m− 3)2 ak,m−3. (A 24)

We believe that if this recurrence relation is solved, and the method of steepest
descents is used to approximate the terms (A 23) as n→∞, then the mysterious point,
x = x∗, would appear as a singularity in the late terms of the late terms, vn. These
‘secondary’ singularities and SCPs have been encountered in Howls et al. (2004) and
Chapman & Mortimer (2005).

Before moving to the gravity–capillary problem, we clarify a labelling issue: the
prescription of x∗ by χ3 = 0 in (A 10) is correct only if the ©B > ­ Stokes line can
be continued from the SCP to the secondary singularity, x∗, along the same branch
of x3/2 (as it is drawn in figure 7a). However, a different choice of the branch cut
(as in figure 7b) shows that χ1 = 0 is the correct equation. To correct this ambiguity,
we use an alternative notation. Let x(k) correspond to a point on the kth Riemann
sheet (associated with the two branches of x3/2); that is, x(k) is mapped to eπikx3/2,
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with k = 0, 1. From (A 7), we then write χ1 as

χ1 =
∫ x

a(0)

[1+ eπik(s)s3/2] ds, (A 25)

where k(s) = 0 or 1, depending on which sheet the integrand is currently on. This
makes it very clear that the secondary singularity, x∗, is still given by χ1 = 0, but x∗
may either lie on the sheet with a(0), or the sheet with a(1). Thus, χ3 in (A 10) is

χ3 =
(∫ a(1)

a(0)

+
∫ x

a(1)

)
[1+ eπik(s)s3/2] ds, (A 26)

except that x is restricted to the same sheet as a(1), since (A 10) requires principal
branches taken throughout. Writing χ1 in the form (A 25) serves to emphasize the
fact that the contribution χ3 is found by beginning at a(0) and then crossing onto the
secondary sheet.

A.1. Crossing Stokes lines in the gravity–capillary problem
We now address the issue of the crossing Stokes lines in Region 6 of § 7.6. For χ in
(3.11), there are three types of branch point, but only the ones from the turning points
are relevant. Remembering that the corner of the step is at ζ = a, and changing to
integration in ζ using (2.4), we denote, for the gravity wave,

χg = i
∫ ζ

a(1)

[
q2

0 + eπik(s)
√
∆

2τq0

]
1
s

ds, (A 27)

where k(s) = 1 on the branch of a(1) and k(s) = 0 on the branch of a(0) (associated
with the capillary wave). In addition to the two turning points, there is a logarithmic
branch point from the factor of s−1, and two square-root branch points from the two
singularities of q0. The former type adds a constant to χ upon crossing the cut, while
latter type switches q0 to −q0 upon crossing the cut. If we wanted to fully explore
the different sheets, it would be better to write ζ = ζ(k1,k2,k3,k4,k5), to keep track of how
many times we have gone around each of the five branch points. However for our
purpose, only the single turning point which causes the intersection is important.

Remember: the issue is that the crossing of the ©B > ©G and ©G > ©C lines in figure 6(c)
also requires a ©B > ©C line in order to avoid an inconsistency. Like the example of the
preceding section, this missing Stokes line comes from a secondary singularity, ζ = ζ •,
not present in any of the early orders. To see this, we write (A 27) in the form

χg = i

(∫ a(0)

a(1)

+
∫ ζ

a(0)

)[
q2

0 + eπik(s)
√
∆

2τq0

]
1
s

ds, (A 28)

and we further restrict ζ to the (k = 0)th Riemann sheet. Thus, (A 28) is an integral
from a(1) to a(0) via the branch cut from the turning point, and then proceeds from
a(0) to ζ . The second integral is the usual capillary integral (hence the capillary wave).
This new representation is used to construct figure 8; the most important feature of the
figure is the missing singularity and its missing Stokes line, which indeed intersects
the SCP.

In addition to the appearance of the secondary singularity, intersecting Stokes
lines are typically accompanied by yet another subtlety: that of the higher-order
Stokes phenomenon (see again Howls et al. 2004; Chapman & Mortimer 2005). This
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FIGURE 8. The underlying contours and shading represent |χg| from (A 28), with dark
regions indicating small values. Values of β = 1 and τ = 1.5 were used, and a = 1, b = 2 for
the corner and stagnation points (circles). Turning points are ζ1 ≈ −0.310 and ζ2 ≈ −1.290
(squares), and the Stokes lines were computed using (5.1) and (6.4). Note that with the
exception of the Stokes line from ζ2, all the Stokes lines that begin in the upper half-plane
will eventually intersect ζ ∈ R+. Branch cuts are shown as a double line. The secondary
singularity, located at ζ • ≈ −0.435, is shown as a black circle, and its Stokes line shown
dashed (note that this Stokes line, as well as the singularity, lies on a different Riemann sheet
than the other components of the figure). The inset confirms that if we analytically continue
around the SCP, beginning with the base solution upstream, then a portion of the new Stokes
line must switch off across the SCP (grey, dashed).

phenomenon specifies that at an SCP, Stokes lines may themselves switch off. Indeed,
this must be the case because if we analytically continue around the SCP in the inset
of figure 6(c), we see that both portions of the ©B > ©C line (on either side of the
SCP) can not be active. It remains to determine whether the portion of the Stokes line
connecting the singularity to the SCP is active, or whether it is, rather, the portion
from the SCP to the free surface.

To address this issue, we note in figure 8 that if the dashed Stokes line is followed
from the SCP to the secondary singularity into the lower half-plane, then it changes
from a ©B > ©C Stokes line to a ©B > ©G Stokes line across the secondary singularity
(ζ = ζ •). In fact, the portion of the axis where −b 6 ζ 6 ζ1, corresponds to the
anti-Stokes lines (where ©B = ©C = ©G) from the corner (ζ = −b) and turning point
(ζ = ζ1). Across the secondary singularity, then, the Stokes line has changed character
abruptly, and we argue by analogy to studies of the higher-order Stokes phenomenon
that this cannot occur unless ζ • is a turning point (which it is not). Thus, the portion
of the Stokes lines connected to the secondary singularity is inactive. Finally, we add



New gravity–capillary waves. Part 2 423

that in figure 8, the dashed Stokes line is the only line associated with secondary
Riemann sheets that we have chosen to show. There are other Stokes lines we have
not shown (and in fact, other secondary singularities), but these are not relevant to the
free-surface waves.
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