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EXPONENTIAL ASYMPTOTICS FOR THIN FILM RUPTURE∗

S. JONATHAN CHAPMAN†, PHILIPPE H. TRINH†‡ , AND THOMAS P. WITELSKI§

Abstract. The formation of singularities in models of many physical systems can be described
using self-similar solutions. One particular example is the finite-time rupture of a thin film of viscous
fluid which coats a solid substrate. Previous studies have suggested the existence of a discrete,
countably infinite number of distinct solutions of the nonlinear differential equation which describes
the self-similar behavior. However, no analytical mechanism for determining these solutions was
identified. In this paper, we use techniques in exponential asymptotics to construct the analytical
selection condition for the infinite sequence of similarity solutions, confirming the conjectures of
earlier numerical studies.
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1. Introduction. Previous numerical studies of filament pinch-off and thin film
rupture have shown that the formation of such finite-time singularities generally occur
in a self-similar manner [15, 16]. In particular, the partial differential equations which
model these physical systems admit similarity solutions. By examining the related
nonlinear ordinary differential equations for these similarity profiles, previous authors
have discovered sets of coexisting solutions; these sets, in many cases, form discrete
countably infinite families. Under some conditions, analytical results for existence
and stability can be obtained for some problems (see, e.g., section 2.4.1 in [16]), but
no general analytical methods have been given that apply to a wide class of nonlinear
problems. In this paper, we shall demonstrate how this selection mechanism can be
understood using techniques in exponential asymptotics.

The formation of a pinch-off or rupture can occur in a wide range of physical
systems (see, for example, reviews by Eggers and coauthors [15, 16, 17], Myers [20],
and Oron, Davis, and Bankoff [23]). However, as the singularity is approached, there
are only a limited number of possibilities for dominant balances between the different
physical effects; the result is that the dynamics tends to be governed by a small
number of universal scenarios. Four well-known cases which exhibit discrete sets of
finite-time similarity solutions include (i) the pinching-off of solids due to surface
diffusion by Bernoff, Bertozzi, and Witelski [1]; (ii) the pinching-off of liquid threads
due to capillary forces by Brenner, Lister, and Stone [5]; (iii) van der Waals–driven
rupture of thin films on solids by Zhang and Lister [35]; and (iv) van der Waals–
driven rupture of fluid sheets in free space by Vaynblat, Lister, and Witelski [29, 30].
Problems with analogous self-similar dynamics occur in many other settings [2, 16].

Here we consider the particular case of the simplest model equation for van der
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THIN FILM RUPTURE 233

Waals–driven rupture of a two-dimensional thin film on a solid substrate. Using the
most basic expression for the influence of destabilizing intermolecular forces on
the film, Williams and Davis [32] proposed a nonlinear evolution equation to model
the evolution of the resultant film dynamics, with

(1.1)
∂h

∂t
= − ∂

∂x

(
1

h

∂h

∂x

)
− ∂

∂x

(
h3 ∂

3h

∂x3

)
,

where h = h(x, t) is the fluid height, given as a function of the spatial coordinate, x,
at time t. We assume that as t tends to a critical time tc, localized rupturing occurs
at the point x = xc. This process is depicted in the left frame of Figure 1 using a
numerical simulation of (1.1). It was shown by Zhang and Lister [35] that for t < tc,
there exist similarity solutions of the form

h(x, t) = τ1/5H(η) with η =

(
x− xc

τ2/5

)
,(1.2)

with τ = tc − t. Thus, the self-similar profiles near rupture are characterized by func-
tions H(η; ε), which depend on a similarity variable, η, and are indexed by a far-field
scaling parameter, ε. By using a numerical shooting method, Zhang and Lister [35]
found the first six (ε ≈ 0.651, 0.304, 0.205, 0.156, 0.127, 0.108) in what appears to be
an infinite set of solutions. However, only the first member is stable and observable in
direct simulations of the partial differential equation (1.1). Afterwards, these results
were confirmed and extended by Witelski and Bernoff [33] using independent numer-
ical schemes and analysis of the stability of the solutions. The principal result of our
work is an equation, F(n, ε) = 0, valid for ε small, which generates the crucial ε that
determines each member of the family of self-similar solutions given n = 1, 2, 3, . . . .
The first ten of such solutions can be seen in the right frame of Figure 1.
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0

0.1
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−20 −10 0 10 20
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Fig. 1. (Left) Localized rupture of a thin film modeled using (1.1) as the critical time is
approached. (Right) The first ten similarity solutions of (2.1), H(η; εn) with n = 1 through 10.
Only the fundamental solution, with n = 1, is linearly stable; here, it is shown in bold.

The asymptotic limit ε → 0 is singular, and herein lies the chief difficulty: the
mechanism which determines which solutions, H(η; ε), are admissible crucially de-
pends on exponentially small effects, hidden beyond all orders from regular a asymp-
totic expansion, e.g., H = H0+ εH1+O(ε2); these seemingly inconsequential terms of
order e−c/ε for some positive c must be instead studied using exponential asymptotics.
Similar ideas have been used to derive other selection mechanisms in nature, such as
those corresponding to models of viscous fingering [6, 10, 11], crystal growth [19], and
vortex reconnection [7].
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234 S. J. CHAPMAN, P. H. TRINH, AND T. P. WITELSKI

In addition to the resolution of the long-standing van der Waals rupture prob-
lem, two other significant contributions stem from this work: First, we show how to
overcome the challenges that arise in this problem, many of which are not present in
previous applications of exponential asymptotics (e.g., in the work of Chapman, King,
and Adams [8]). Second, and more importantly, the methodology we develop has
wider applicability in regards to other self-similar problems (such as for the pinch-off
of solid or liquid filaments); this paper should be seen as the first step towards these
future extensions.

2. Mathematical formulation. Substituting the similarity ansatz of (1.2) into
the evolution equation (1.1), we see that the similarity solutions satisfy

(2.1) −1

5

[
H − 2ηH ′

]
= − d

dη

[
H ′

H

]
− d

dη

[
H3H ′′′

]
.

Here and henceforth, primes (′) denote differentiation with respect to the associated
variable of the function. Rupturing is a localized behavior, meaning that at any
fixed point, x, bounded away from xc, the evolution of the profile remains essentially
uninfluenced by the singularity as t → tc; this can be expressed as ∂th(x, t) = O(1)
away from xc. Thus, in terms of the rupture solution for τ → 0, this yields a far-field
Robin boundary condition for the self-similar solutions,

1

5

[
H − 2ηH ′

]
→ 0 as |η| → ∞,

which can be integrated to give the requirement that

(2.2) H(η) ∼ C|η|1/2 as |η| → ∞
for some positive constant C. Only symmetric solutions of (2.1) have been observed,
so we make use of this assumption and solve on the domain 0 ≤ η ≤ ∞ with the
symmetry conditions H ′(0) = H ′′′(0) = 0. Finally, we can normalize the constant C
out of the boundary condition (2.2) by rescaling

(2.3) H(η) = C4/5φ(z) and η = C−2/5z,

thus putting (2.1) into the form

(2.4a)
1

5

[
φ− 2zφ′

]
− d

dz

[
φ′

φ

]
= ε2

d

dz

[
φ3φ′′′

]
on z ∈ [0,∞), where ε = C2, and with the three boundary conditions

(2.4b) φ′(0) = φ′′′(0) = 0 and φ ∼ z1/2 as z → ∞.

The rest of this paper will be devoted to studying problem (2.4a, b).
From numerical work, solutions φ = Φ(z; ε) of this problem have been presumed

to form the members of a discrete and countably infinite set (see Figure 1). In terms
of ε, these solutions can then be ordered, with Φ(η; εn), where n = 1, 2, 3, . . . , and
with values of εn forming a decreasing sequence. In this paper, we shall be interested
in constructing solutions for the limit ε → 0 or, equivalently, as n → ∞.

The source of the problem in solving (2.4) is easily understood: as z → ∞, we
can show that solutions contain the following behaviors:

(2.5) φ(z) =

[
z

1
2 + a1z

1
2 +O (1/z2)]+ a2z

− 1
3 e−2βz5/2

+ a3z
− 1

3 eβ(1+i
√
3)z5/6

+ a4z
− 1

3 eβ(1−i
√
3)z5/6

,
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THIN FILM RUPTURE 235

where β = 3[2/(625ε2)]1/3. From this equation, we see that in order to satisfy the far-
field condition in (2.4b), we need a1 = a3 = a4 = 0. However, combined with the two
symmetry conditions, this gives a total of five constraints on the solution of a fourth-
order equation—the problem is, in fact, overdetermined. This overdeterminancy is a
classic sign of a beyond-all-orders eigenvalue problem; solutions can only be expected
to exist for specific values of ε, and this selection mechanism is made clear by using
exponential asymptotics.

3. Overview of the general methodology. In studying the rupture problem,
we shall encounter four different types of asymptotic expansions, each of which char-
acterizes the different modes that combine to form the final solution:

(3.1)
0

[
φ0(z) + εφ1(z) +O(ε2)

]
e0, 1

[
A1(z) +O(ε)

]
eS1(z)/ε,

2

[
A2(z) +O(ε)

]
eS2(z)/ε, 3

[
A3(z) +O(ε)

]
eS3(z)/ε.

The base series, represented by 0 , is simply the usual expansion for the profile of a
thin film near rupture, expressed in terms of its similarity height, φ, and coordinate, z,
and in powers of the small parameter, ε. Qualitatively, this base series is what gives
the profile its overall shape. In addition, we find that the problem contains a decaying
mode, 1 , as well as two exponentially growing modes, 2 and 3 , which are unbounded
in the far field. Our problem, then, is to find values of ε for which the contributions
from 2 and 3 sum to zero at infinity, thus satisfying the boundary conditions. The
difficulty, however, is that for all real values of z (describing the physical thin film),
the base series exponentially dominates the three other contributions—these modes
are effectively obscured by the regular perturbation expansion.

In the left frame of Figure 2, we have plotted the first ten solutions, φ = Φn,
overlaid with the leading-order approximation from mode 0 . Although φ0 is a superb
approximation throughout, the analytic continuation of the function off the real z-axis
contains a series of square-root branch points (Figure 2, right). These singularities
will cause the base series 0 to diverge on the real axis for any ε > 0. In order to

−8 −4 0 4 8

0

1

2

3

z

φ

−4 −2 0 2 4 6 8

0

2

4

6

�(z)

	(
z
)

Fig. 2. (Left) Expressed in terms of φ and z using (2.3), the ten similarity solutions of Figure 1
(right) closely approach a single curve as n increases. The nodes indicate the leading-order approxi-
mation, φ0, derived in section 4, which tends to

√
z as z → ∞. (Right) Contour plot for |φ0(z)| with

light regions corresponding to small values and dark regions to large values. Crucially, we note the
presence of branch points for which the branch cuts are taken directly upwards and shown striped.
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236 S. J. CHAPMAN, P. H. TRINH, AND T. P. WITELSKI

obtain the best approximation, we can optimally truncate the number of terms in 0 ,
obtaining an exponentially small remainder.

This remainder obeys an interesting transition: as z is analytically continued
across critical curves (Stokes lines), 0 may switch on one of the other modes in
a process known as the Stokes phenomenon. This rather surprising consequence of
singular perturbation theory occupied Stokes at various points [24, 25] throughout his
life, and most memorably he described the transition as causing the inferior term to
emerge “as it were into a mist.”

For example, in our problem, we could describe such a transition as

(3.2)
[
φ0 +O(ε2)

]
e0

z∗−−−−−→
0 > 3

[
φ0 +O(ε2)

]
e0 +

[
A3(x) +O(ε)

]
eS3(x)/ε,

and the arrow notation should be read as, “ 0 switches on 3 across a Stokes line
originating from z∗.” The point z∗ is usually a singularity or branch point of the early
asymptotic terms (of 0 for the above case). The general rules regarding Stokes lines
were established by Dingle [14, pp. 6–8] and are as follows: Stokes lines are locations
where (i) the two interacting exponentials have equal phase (e.g., 	[S0] = 	[S3] with
S0 ≡ 0); and (ii) the exponential doing the switching is larger than the exponential
being switched (e.g., −�[S0] ≥ −�[S3]). Together these two conditions imply that
at a Stokes line, the exponential doing the switching has reached peak exponential
dominance over the other; this is also why we have chosen to use a > sign to mark
the process. Of course, it is also possible for other pairs of switchings to occur.

Exponential asymptotics is the name given to the technique of deriving the ex-
ponentially small terms switched on by the Stokes phenomenon; its general theory is
outlined in the reviews by Boyd [3, 4] and Dingle [14]. The particular methods we
shall use, however, stem from Chapman, King, and Adams [8] and Olde Daalhuis et al.
[22] and have been applied to a wide variety of problems, particularly in the context
of fluid flow [6, 9, 28]. We also note that Stokes lines and the Stokes phenomenon can
be studied using other methods such as Borel summation (see, e.g., Grimshaw [18]
and Olde Daalhuis [21]). Selection mechanisms which are determined from beyond-
all-order terms are also well known, having been studied in models of crystal growth
[19], viscous fingering [6, 10, 11, 26, 34], and vortex reconnection [7].

Before turning to the initial asymptotic analysis in the next section, we summarize
in Figure 3 some of the key ideas which underlie the asymptotic methodology of the
rupturing problem.

4. Initial asymptotic analysis. Let us begin by expanding the solution in
terms of a regular perturbation expansion,

(4.1) φ(z) =
∞∑
n=0

εnφn(z),

and substitute the expression into (2.4a) and (2.4b). At leading order, this gives

(4.2)
1

5

[
φ0 − 2zφ′

0

]
− d

dz

[
φ′
0

φ0

]
= 0,

with φ′
0(0) = 0 and φ0 ∼ √

z as z → ∞. The solution of this second-order boundary
value for z ∈ R can be computed using standard numerical methods, and this process
yields the appropriate condition at the origin, with φ0(0) ≈ 0.96163849. Once this
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�(Z)

f̂(Z)φ(z)

�(z) �(Z)

�(z)

stokes line0

1

2 3 2 3

00

Fig. 3. (Left) In section 5, we show that as the base series, 0 , is analytically continued past the
first Stokes line, the two oscillatory modes, 2 and 3 , are switched on. These Stokes lines (shown
dashed) lie in the complex plane, where z ∈ C, and originate from singularities (circles). There is
an infinitude of such Stokes lines, but we illustrate only the first such switching. (Right) Later in
section 6, we show that within a far-field scaling, where Z � z, the decaying mode 1 , written as
f̂(Z), can also switch on 2 and 3 because of Stokes lines from turning points (squares). Solutions
are symmetric (in z), and for a given ε, a solution is valid only if the oscillations are switched off
at infinity. Ultimately, it is the Stokes phenomenon depicted in the right figure which determines
the selection of rupturing solutions.

initial condition has been obtained, we may integrate the solution to any point in the
complex plane.

The modulus, |φ0(z)|, was previously illustrated in the right frame of Figure 2. In
fact, the analytic continuation of the leading-order solution suggests that there exists
an infinite set of singularities at the points z = σm for m = 1, 2, 3, . . . , beginning
with σ1 ≈ 2.58 + 2.72i, and where each of these is a member of a quartet in the
complex plane, {σm,−σm, σm,−σm}. The appearance of such nearly periodic arrays
of singularities has been shown to be a common trait of self-similar solutions to a wide
class of nonlinear partial differential equations (see, e.g., [12, 13]).

In fact, as m → ∞, the locations of the singularities are |σm| ∼ m2/5, and this
can be derived from the following argument: consider the limit of (4.2) as |z| → ∞;
it is straightforward to show that within the first quadrant

(4.3) φ0 ∼
[√

z − 1

2z2
+ · · ·

]
+

[
C

z4/5

]
e−

4
25 z

5/2

,

where the first bracketed terms are found through an algebraic expansion of (4.2),
and the exponential is found through a WKB analysis. Later, in section 6.1, we will
explain the connection between the unknown constant, C, and the exponentials (3.1)
switched on through the Stokes phenomenon.

Notice that the exponential term in (4.3) is exponentially smaller than the alge-
braic terms for z along the positive real axis, but as z approaches the ray eπi/5, the
exponential factor becomes O(1). Indeed the singularities, z = σm as m → ∞, can
be found by scaling z such that the first and last terms of (4.3) are balanced. We
thus set z = eπi/5(1+ s)/δ and assume that both δ and |s|  1. A balance of the two
terms in (4.3) requires

Cδ4/5

e4πi/25
exp

[(
4

25

)(
5

2

) 	(s)
δ5/2

]
exp

[
−i

(
4

25

)
1

δ5/2

]
∼ −eπi/10

δ1/2
,

where we have expanded s into its real and imaginary parts in order to isolate the
phase contributions of the exponential. On the left-hand side, the second exponential
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only contributes to the oscillations, so in order to ensure similar magnitudes, we
choose s so that 	(s) ∼ − 13

4 δ5/2 log δ. This motivates us to make the substitution

(4.4) z =
eπi/5

δ

[
1 + i

(− 13
4 log δ + ξ

)
δ5/2

]
for the new outer variable, ξ = O(1). Under this scaling, we can verify that φ0 in
(4.3) becomes

(4.5) φ0 ∼ eπi/10

δ1/2
g(ξ), where g(ξ) ∼ g0 = 1 + Cμe2�(ξ)/5,

and μ = exp[−4i/(25δ5/2)] = O(1).
Because we are only concerned about the behavior of the singularities of φ0, we

are free to approach along any direction of z; consequently without loss of generality
we can examine ξ ∈ R. Equation (4.5) will be used to match the solutions in region
where ξ = O(1).

Returning now to the differential equation for φ0 in (4.2), and using the scalings
(4.4) and (4.5), we get for the leading-order problem

(4.6)
2

5

dg0
dξ

+
d

dξ

[
g′0
g0

]
= 0.

This equation can be integrated exactly and matched with the outer limit of (4.3)
and (4.7) as ξ → −∞ (or tending towards the real z-axis); this gives

(4.7) g0 ∼ 1

1− C exp[− 4i
25δ

−5/2]e2ξ/5
,

where we note that the prefactor of the real exponential in the denominator is only
valid to leading order. From (4.7), we see that within the first quadrant, g has simple
poles at

(4.8) ξm =
5

2

[
−2πim− logC +

4

25
δ5/2

]
for m ∈ Z. Note that within this outer region, we require ξm = O(1), and thus

(4.9) m = O(δ−5/2),

that is to say, along the ray eπi/5 and in a region located a distance O(1/δ) from
the origin, we would expect the singularity to be indexed by O(δ−5/2). Using the
scaling for z in (4.4), we then see that the difference between the singularities is
|σm+1 − σm| = δ3/2|ξm+1 − ξm| = O(δ3/2). Solving the recurrence relation and using
the connection between m and δ in (4.9), we get the final result of

(4.10) |σm| = O(m2/5) as m → ∞.

This asymptotic result, which establishes the distribution of singularities, is verified
in the left frame of Figure 4 in comparison with the numerical computations.

Finally, we also mention that in terms of φ0(z), the behavior near the singularities
established in (4.7) and (4.8) is simply

(4.11) φ0(z) ∼ 5

2σ

[
1

z − σm

]
as z → σm.
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|
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0.64
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χ
m
)

Fig. 4. (Left) Numerically computed values of |σm|, illustrated using dots, with the curve given
by the estimate 4.31m2/5 (see (4.10)). (Right) Numerically computed values of �(χm), illustrated
using dots, with the curve given the estimate 0.6279 + 0.0758m−3/4 (see (5.5)).

Now if we turn to the higher-order terms of the differential equation (2.4a) using
the series in (4.1), we have at O(ε2n) for n = 1, 2, . . .

(4.12)
1

5

[
φn − 2zφ′

n

]
− d2

dz2

[
φn

φ0

]
=

d

dz

[
φ3
0φ

′′′
n−1

]
− d2

dz2

[
φ1φn−1

φ2
0

]
+ · · · ,

with the condition that φn → 0 as z → ∞. From this, we see that at each order, φn is
partly determined using the second derivative of φn−1. Thus, each subsequent order
necessarily adds 2 the power of the previous singularity, so that in the limit n → ∞,
the effects of the early singularities in (4.11) dominate the behavior of the late-order
terms. Then for any fixed z ∈ R, we expect φn to diverge like a series of factorials
over power terms:

(4.13) φn ∼
∞∑

m=1

Pm(z)Γ(2n+ γm)

[χm(z)]2n+γm
as n → ∞,

where γm is constant. The form of φn in (4.13) consists of a sum of ansatzes with
χm(σm) = 0, and one term for each singularity. We must also add to (4.13) similar
terms corresponding to the singularities at −σm, σm, and −σm. However, because
of the linearity of the asymptotic derivation (similar to the process of determining
multiple modes in a WKB analysis), we shall dispense with the m-index and examine
the terms in (4.13) individually for the moment. Substituting the ansatz into the
O(εn) equation (4.12), we find at leading order, as n → ∞, that

(4.14) − (χ′)2

φ0
= φ3

0(χ
′)4.

Ignoring the trivial solution, we have χ′ = ±iφ2
0 or, selecting the positive branch

without loss of generality,

(4.15) χ(z) = i

∫ z

σ

1

φ2
0

dt.
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Continuing to the next order as n → ∞, we determine P = Pm by

(4.16)
z

5

[
2χ′P

]
+

1

φ0

[
2χ′P ′ + χ′′P

]
− φ′

0

φ2
0

[
2χ′P

]
= −φ3

0

[
4(χ′)3P ′ + 6χ′′(χ′)2P

]
− φ2

0φ
′
0

[
3(χ′)3P

]
,

or simply

(4.17)
P ′

P
=

zφ0

5
− 5φ′

0

2φ0
− 5χ′′

2χ′ ,

so that, upon using (4.14), P is given by

(4.18) P (z) = Λφ
5/2
0 exp

(∫ z

s

tφ0

5
dt

)
,

where Λ is a constant and s is arbitrary. Thus, each singularity σ = σm is associated
with a singulant χ = χm from (4.15) and prefactor P = Pm from (4.18). The remain-
ing constants (γm and Λm) which appear in (4.13) and (4.18) can be determined by
matching inner and outer solutions near the singularities, σm; for the purpose of this
work, however, their exact values are not needed. In the next section, we shall discuss
the connection between the late terms, φn, and the Stokes phenomenon.

5. Stokes phenomenon in the O(1) scaling. The underlying divergence of
the asymptotic expansion 0 in (4.1) causes the Stokes phenomenon to occur: as the
complexified solution crosses critical curves (Stokes lines) which originate from each
of the singularities, σm, it switches on a subdominant exponential. Before we examine
these Stokes lines, however, let us review how the exponentials can be derived. First,
we truncate the base series (4.1), writing

(5.1) φ(z) =

N−1∑
n=0

ε2nφn(z) +RN (z).

Next, we substitute this expression into the differential equation (2.4a), giving a linear
equation for the remainder:

(5.2)
1

5

[
RN − 2zR′

N

]
− d2

dz2

[
RN

φ0

]
− ε2

d

dz

[
φ3
0R

′′′
N

]
+ ε2

d2

dz2

[
φ1

φ0
RN

]
∼ ε2N

d

dz

[
φ3
0φ

′′′
N−1

]
.

The result, (5.2), expresses the fact that the remainder, RN , is typically O(ε2N ), and
hence only algebraically small; however, if N is chosen to be the optimal truncation
point, then RN becomes exponentially small—this exponentially small error, in fact,
simply corresponds to the hidden modes, 2 and 3 , which lie beyond all orders.
Moreover, since the optimal truncation point, N → ∞ as ε → 0, this shows us that
RN is determined using the late terms in (4.13). This process of optimally truncating,
and then examining RN as the Stokes line is crossed, has been shown in [22] and [27],
and the steps are generically similar here as well, so we do not repeat them.
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The final result is the following: As the Stokes line from σm is crossed, the base
series, 0 , switches on an exponential of the form

(5.3)

[
φ0 + εφ1 + · · ·

]
e0

σm−−−−−−−→
0 > 2 , 3

[
φ0 + εφ1 + · · ·

]
e0 +

2πi

εγm
Pme±χm/ε.

In (5.3), we have chosen to assign 2 to eχ/ε and 3 to e−χ/ε. The arrow notation
indicates the singularity responsible for the Stokes line (σm), as well as the switching
process.

The more important question, however, is where are these transitions occurring?
From Dingle [14], Stokes lines, where 0 switches on 2 , are given by 	(χm) = 0 and
�(χm) > 0; similarly, 0 will switch on 3 wherever 	(−χm) = 0 and �(−χm) > 0.
The requirements on the imaginary parts express the fact that Stokes lines are equal
phase lines, whereas the requirements on the real parts express the fact that at Stokes
lines, the magnitude of 0 reaches peak dominance over the other modes; thus we may
write 0 > 2 , 3 . Also important are the anti-Stokes lines, where the exponentials
are of comparable size; these are simply given by �(χm) = 0.

Each singularity, in fact, generates three Stokes lines and six anti-Stokes lines.
However, we are primarily concerned with the physical thin film problem and the
boundary conditions in (2.4b), so the only relevant Stokes lines are the ones that
intersect the real axis. The result is shown in Figure 5. Observe the surprising
arrangement of anti-Stokes lines: Each singularity, σm for m ≥ 1, produces an anti-
Stokes line which lies closer to the real axis than the corresponding line from σm−1.
Along the real axis, �(χm) is constant, so it must be the case that

(5.4) �(χ1) > �(χ2) > �(χ3) > · · ·
for z ∈ R. For a typical problem in exponential asymptotics, the dominant exponential
is related to the nearest singularity from the domain which was analytically continued.
We would have thus expected that, near the origin, the beyond-all-orders behavior
is determined using {σ1,−σ1, σ1,−σ1}. For the rupturing problem, however, we see
that this is not the case, and the dominant exponential is generated near z = ∞.

σ1

σ2

σ3

σ4

0 > 3

0 > 3

0 > 3

0 = 3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

0

2

4

�(z)

�(
z
)

Fig. 5. Stokes (solid) and anti-Stokes (dotted) lines, originating from the z = σm singularities.
For σ1, all three Stokes lines and all six anti-Stokes lines are shown; for the others, only the im-
portant Stokes and anti-Stokes lines are shown. The key observation is that along the real axis, the
exponentials generated by each subsequent singularity (m increasing) dominate the previous ones.
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Numerically we find that as m → ∞,

(5.5) �(χm) ∼ b+ cm−3/4,

where b ≈ 0.6279 and c ≈ 0.0758 (see the right frame of Figure 4), while the spacing
between singularities, σm+1−σm = O(m−3/5), is given by (4.10). Thus the difference
between successive exponentials is getting smaller, and the Stokes lines are getting
closer together, asm → ∞. This is all indicative of the existence of another asymptotic
region in the far field. In the next section we examine this far-field region by rescaling
near infinity and examining the problem there.

6. Stokes phenomenon in the far-field scaling. Let us rescale the equations
in (2.4), so that we may examine the solution near z = ∞. We write z = ε−2/5Z and
φ = ε−1/5f , and this gives

(6.1)
1

5

[
f − 2Zf ′

]
− ε

d

dZ

[
f ′

f

]
− ε3

d

dZ

[
f3f ′′′

]
= 0,

with the boundary condition f ∼ √
Z as |Z| → ∞. Appealing to symmetry, we shall

again work with analytic continuation of the ordinary differential equation (6.1) from
Z ∈ R+ for the rest of this section. As in section 4, we can expand the solution as
f =

∑
εnfn, and this gives

(6.2) f ∼ f∗ = Z
1
2 − ε

2Z2
− 35ε2

16Z
9
2

+O(ε3),

or, simply, the far-field behavior of the unscaled series in (4.1) as z → ∞. In addition
to this, we have three possible types of WKB behavior. If we linearize about the
expansion (6.2) and write f = f∗ + f̂ in (6.1), then we have

(6.3)
1

5

[
f̂ − 2f̂ ′

]
− ε

d

dZ

[
f̂ ′

f∗
− f ′

∗
f2∗

f̂

]
− ε3

d

dZ

[
f3
∗ f̂

′′′ + 3f2
∗f

′′′
∗ f̂

]
.

Writing the solution as f̂ = A(Z)eS(Z)/ε, we find at leading order the eikonal equation

(6.4) −2

5
ZS′ − Z− 1

2 (S′)2 − Z
3
2 (S′)4 = 0.

The trivial solution S′ = 0 simply corresponds to the algebraic mode, i.e., the a1 term
in (2.5), and this mode must be eliminated in order to satisfy the boundary conditions.
The other three modes are obtained as roots of the cubic equation:

S′
1(Z) = −

(
5

3

) 1
3 1

β
1
3

+
β

1
3

(45)
1
3Z2

,(6.5a)

S′
2,3(Z) =

(
5

3

) 1
3 (1± i

√
3)

2β
1
3

− (1∓ i
√
3)β

1
3

2(45)
1
3Z2

,(6.5b)

where β is given by

(6.6) β = −9Z
11
2 +

√
3Z3

√
25 + 27Z5 = −9Z

11
2 + 9Z3

4∏
k=0

√
Z − Zk,

D
ow

nl
oa

de
d 

03
/1

2/
13

 to
 1

63
.1

.2
37

.1
61

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

THIN FILM RUPTURE 243

with Zk = (25/27)1/5e(2k+1)πi/5 denoting the turning points. We thus have the ex-
pressions

(6.7) Sj,k(Z) =

∫ Z

Zk

S′
j(t) dt,

which, for j = 1, 2, 3, simply correspond to the far-field representations of our three
WKB solutions 1 , 2 , and 3 , integrated from each of the five turning points.

At next order, (6.3) yields the amplitude equation

(6.8) 10Z
5
2A′
[
−3Z

3
2 − 10S′ + 9Z

7
2 (S′)2

]
+A

[
78Z3 + 215Z

3
2S′ + 10(10 + 3Z5)(S′)2

]
= 0,

from which we gather that

(6.9) Aj = Bj exp

(
−
∫ Z

s

G(t;S′
j) dt

)
for j = 1, 2, 3, where Bj is constant, where s may be chosen arbitrarily, and where we
have defined

(6.10) G(t;S′) ≡ 78t3 + 215t
3
2S′(t) + 10(10 + 3t5)(S′(t))2

10t
5
2 {−3t

3
2 − 10S′(t) + 9t

7
2 [S′(t)]2} .

The three WKB solutions, 1 , 2 , and 3 , which have amplitudes and powers given by
(6.7) and (6.9), are connected at the turning points Z = Zk corresponding to locations
where the eikonal equation (6.4) has a double root for S′. In Appendix A, we will
show that at the kth turning point, two of the three WKB solutions are then scaled
like Airy functions, with

(6.11) i and j ∼
[

const.

(Z − Zk)1/4

]
× e±const.×(Z−Zk)

3/2/ε,

and i, j = 1, 2, 3, and the positive and negative signs, respectively, assigned to i and
j (or vice versa). The important observation from (6.11) is that it is possible for one
exponential to switch on its pair across a Stokes line originating from Zk; these lines
are given by points Z ∈ C, where

(6.12) 	
[∫ Z

Zk

(S′
i − S′

j) dt

]
= 0 and �

[∫ Z

Zk

(S′
i − S′

j) dt

]
> 0,

where i, j = 1, 2, 3 and k = 0, 1, . . . , 4. Equation (6.12) gives the prescription of the
Stokes line which originates from Zk and corresponds to eSi/ε switching on eSj/ε, or
simply i > j . In Appendix B, we will show how these Stokes lines can be computed.

We now turn to Figure 6, where we have plotted the five turning points and
their associated Stokes lines in the Z-plane, but where the figure is only applicable
for analytic continuation from Z ∈ R

+. The important transition occurs as Z is
analytically continued across Z ≈ 0.7; here, 1 switches on 3 crossing the Stokes line
from Z0, and 1 switches on 2 crossing the Stokes line from Z1. This is the crucial
process, and the 2 and 3 exponentials switched on will determine the selection
mechanism for rupturing.
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Z2: 2 > 1

Z1: 3 > 1

Z0: 1 > 3

Z2: 1 > 2

Z3: 3 > 1

Z4: 1 > 3

Z0: 2 > 1

Z4: 3 > 1

Z1: 1 > 3Z0: 1 > 2

Z1: 3 > 2

Z2: 2 > 3

Z2: 3 > 2

Z3: 2 > 3

Z3: 3 > 2

Z4: 2 > 3

Z0: 2 > 3

Z4: 3 > 2

Z0: 3 > 2

Z1: 2 > 3

Z1: 1 > 2

Z3: 2 > 1

Z2: 1 > 3

Z4: 3 > 1

Z0: 1 > 3

Z3: 3 > 1

Z1: 2 > 1

Z4: 1 > 2

Z0: 3 > 1

Z2: 1 > 3

Z0

Z1

Z2

Z3

Z4

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

�(Z)

�(
Z
)

Fig. 6. Stokes lines from the five turning points in the far-field scaling, applicable for when the
original problem is analytically continued to �(Z) > 0; when �(Z) < 0, the figure should be reflected
about the imaginary axis. Lines for interactions between 1 and 2 are thick, between 1 and 3 are
thin, and between 2 and 3 are dotted. Branch cuts are shown striped. The circled intersection
point is a crucial component in our analysis.

6.1. The selection mechanism. To complete the solution and determine the
selection mechanism we need to match the far-field solution, f , to the near-field
solution, φ. Recall from (4.3) that

(6.13) φ0 ∼
[√

z − 1

2
z−2 + · · ·

]
+ Cz−4/5e−

4
25 z

5/2

.

A simple check of the local behavior of S1(Z) as Z → 0 shows that

(6.14) CZ−4/5e−
4
25Z

5/2 ∼ A1e
S1(Z)/ε,

so that this decaying exponential from the near-field region matches with WKB so-
lution 1 in the far field. The constant C which determines the amplitude of the
decaying mode can be numerically computed; however, its exact value will turn out
to be unimportant. To this mode we must add the (exponentially small) contribu-
tion from the two oscillating exponentials e±χ/ε generated by all the Stokes lines in
the near-field region; these oscillating exponentials then match with the two WKB
solutions given by 2 and 3 .

The key remaining step is to derive the form of the switchings which occur when
the WKB mode 1 crosses the two key Stokes lines in Figure 6; this involves some
laborious algebra, which we postpone until Appendix A. The result, however, is that
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upon crossing the Stokes line from Z0, the decaying mode switches on a multiple of
the WKB solution 3 , which (anticipating the matching to follow), we write in terms
of the inner variable z as

(6.15)

[
C

z4/5

]
e−

4
25 z

5/2 Z0−−−−−→
1 > 3

[
C

z4/5

]
e−

4
25 z

5/2

+ λε39/50 exp

[
−2i log ε

5ε
+

b

ε

]
× φ

5/2
0 (z) exp

[∫ x

s

tφ0

5
dt

]
exp

[
− i

ε

∫ x

s

1

φ2
0

dt

]
;

here s can be chosen without loss of generality to be real and positive, and λ and b are
constants given by (A.20) and (A.19). This exponential cannot be present at infinity,
and therefore must be switched on to the left of Z0. Matching with the near-field
solution implies that this is the amplitude of the oscillatory exponential as z → ∞.
Now as we cross all the Stokes lines in the inner region this amplitude will be altered.
However, it turns out that the sum of all these Stokes jumps is still exponentially
small: the Stokes lines in the near-field region are all subdominant to that in the
far-field region.

To see this, recall from (4.10) and (5.5) that σm = O(m2/5) and �(χm) ∼ b +
cm−3/4 as m → ∞. When we have gone to the outer region, with z = O(ε−2/5), this
means that we have reached index values of m = O(ε−1). Thus, we have

�(χm)

ε
=

b

ε
+O(ε−1/4).

Since the exponential switched on in the far-field region is O(e−b/ε), the inner switch-
ings are exponentially subdominant by a factor O(exp(−ε−1/4)). Thus we are able
to conclude that the exponential in (6.15) is essentially unchanged all the way to the
origin.

There is a similar switching from the 1 > 2 transition due to the Stokes line
from Z4; this simply results in the complex conjugate of the switching in (6.15). Thus,
if we write λ = |λ|eiΨ, then for z ∈ R+ the combined contribution from the 2 and 3

exponentials are given by

(6.16) ∼
[
2|λ| exp(�(b)

ε +
∫ z

s
tφ0

5 dt)

ε−39/50φ
−5/2
0

]
cos

[
Ψ− 2 log ε

5ε
+

	(b)
ε

− 1

ε

∫ 0

s

1

φ2
0

dt

]
.

From the boundary condition (2.4b), we need to impose that the third derivative of
(6.16) is zero at the origin; to leading order, this gives the requirement that

(6.17) sin

[
Ψ− 2 log ε

5ε
+

	(b)
ε

− 1

ε

∫ 0

s

1

φ2
0

dt

]
= 0,

or that

(6.18) F(n, ε) ≡ Ψ− 2 log ε

5ε
+

	(b)
ε

− 1

ε

∫ 0

s

1

φ2
0

dt− nπ + π = 0

for n ∈ Z
+. The π term shifts n so that the first valid solution begins at n = 1. The

derivation of F(n, ε) is now complete. In Appendix A, we show that when s = 1, then
Ψ ≈ −2.7393, 	(b) ≈ −0.1486, and the integral ≈ −1.0176. The result is shown in
Figure 7. The fit between the asymptotic prediction and numerical computation is
excellent.
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1 3 5 7 9 11 13 15

0

0.2

0.4

0.6

n

ε

0 10 20

0

2

4

6

8

1/ε

n+ 2
5π

(
log ε
ε

)
Numerical Asymptotic

0.651071 0.437836
0.303993 0.243774
0.204949 0.173874
0.156492 0.136843
0.127355 0.113616
0.107764 0.097569
0.093626 0.085761
0.082911 0.076677
0.074422 0.069454
0.067625 0.063562
0.062005 0.058656
0.057287 0.054503
0.053277 0.050938
0.049800 0.047842
0.046760 0.045125

Fig. 7. The large figure shows the asymptotic (solid) versus numerical (dotted) predictions for
the first 15 solutions of the rupturing problem; values of ε are also listed in the table. Within the
smaller inset, the asymptotics correctly predict that condition (6.18) is satisfied for 1/ε large.

7. Discussion. On the most basic level, the derivation of the selection mech-
anism, F(n, ε) = 0, which applies for the case of van der Waals–driven rupture of
a thin film, involves the same key ideas as for other classic beyond-all-orders selec-
tion problems: the common theme throughout is the exclusion of exponentially small
oscillations, switched on via the Stokes phenomenon, in order to satisfy a set of over-
determined boundary conditions.

However, our problem contains a variety of new difficulties not encountered in
previous exponential asymptotic studies. Let us highlight three significant obstacles:
(i) the leading-order solution, φ0, which contains the necessary singularity information,
can only be determined numerically; (ii) the exponentials, 2 and 3 , relevant to
the selection mechanism, were not switched on by any finite singularity, σ = σm,
but rather by a clustering of such singularities at infinity; and (iii) the asymptotic
series, 1 , which performs the key switching is a decaying mode in the leading-order
solution—thus, the selection mechanism is determined by a doubly small exponential
(as opposed to a singly small switching due to the base series, 0 ).

Finally, while our analysis was carried out for the particular case of two-dimensional
rupture due to attractive van der Waals forces, the mathematics of pinch-off and rup-
turing due to other physical mechanisms share similar characteristics to our own.
Thus, it appears likely that the resolution of these other selection problems will in-
volve analogous techniques to the ones we have developed here. Work on these and
other extensions is ongoing.

Appendix A. Matching of turning-point solutions. In this section, we
derive the form of the 1 > 3 switching which occurs when the decaying mode is
analytically continued past the Stokes line from Z0 = (25/27)1/5eπi/5; our task will
culminate with the derivation of (6.15). There is a similar switching with 1 > 2 from
the Z4-Stokes line, and this simply yields the complex conjugate of our result.

First, let us examine Table 1, which contains a list of the local behaviors of S′
j

near Z = 0, Z = Z0, and Z = ∞. Remarking that the values of Aj in (6.9) are
unbounded as the origin or turning point is approached, we can add and subtract the
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Table 1

Asymptotic behavior of the three exponents from (6.5a) and (6.5b), where W = Z − Z0. Note
that of the three exponentials given by the expression exp(S′

j/ε) for j = 1, 2, 3, only 1 decays at

infinity, so it must be the case that the amplitudes of 2 and 3 vanish in the far field.

S′
1(Z → 0) ∼

[
− 2

5

]
Z

3
2 +

[
8

125

]
Z

13
2 + O(

Z
23
2
)

S′
2,3(Z → 0) ∼

[
±i

]
Z−1 +

[
1
5

]
Z

3
2 + O(

Z4
)

S′
1,3(Z → Z0) ∼

[(
2e−7πi

54

) 1
10

]
±

[(
e7πi

15

) 1
10

]
W

1
2 + O(

W
3
2
)

S′
2(Z → Z0) ∼

[
2
(

3e3πi

54

) 1
10

]
+

[
13
3

(
e11πi

3358

) 1
10

]
W + O(

W 2
)

S′
1(Z → ∞) ∼

[
− (

2
5

) 1
3

]
Z− 1

6 + O(
Z− 11

6
)

S′
2,3(Z → ∞) ∼

[(
1
20

) 1
3 (1 ±√

3i)
]
Z− 1

6 + O(
Z− 11

6
)

local behaviors from the integrand to ease the matching procedure, writing

A1 =

[
B1

(Z − Z0)1/4Z4/5

]
exp

[
−
∫ Z

s

G1(t) dt

]
,(A.1)

A3 =

[
B3Z

23/20e
2
5 iZ

5/2

(Z − Z0)1/4

]
exp

[
−
∫ Z

s

G3(t) dt

]
,(A.2)

where we have defined

G1(t) ≡ G(t;φ1)− 1

4(t−X0)
− 4

5t
,(A.3)

G3(t) ≡ G(t;φ3)− 1

4(t−X0)
− i

t7/2
+

23

20t
,(A.4)

so that both G1 and G3 are integrable at Z = 0 and Z = ∞.
We are now in a position to calculate the solution in the outer region. First, we

match the far-field behavior of φ0 with the WKB solution using (6.14) and (A.1).
This gives a relation between B1 and C:

(A.5) B1 = C(−Z0)
1/4 exp

[∫ 0

s

G1(t) dt

]
exp

[
−1

ε

∫ 0

Z0

(
S′
1 +

4

25
t5/2

)
dt

]
.

Let us also introduce constants p and q:

(A.6) p ≡
(
3e−7πi

54

)1/10

and q ≡ 2

3

(
e−3πi

15

)1/10

.

As we approach the turning point, with Z = Z0 + ε2/3ξ, the first WKB solution gives

(A.7) A1e
S1/ε ∼

[
exp

(
pξ

ε1/3

)
B1 exp

(− ∫ Z0

s G1 dt
)

ε1/6Z
4/5
0

]
× e−qξ3/2

ξ1/4
,

while the third WKB solution tends to

(A.8) A3e
S3/ε ∼

[
exp

(
pξ

ε1/3

)
B3 exp

(− ∫ Z0

s G3 dt
)
exp
(
2i
5 Z

−5/2
0

)
ε1/6Z

−23/20
0

]
× eqξ

3/2

ξ1/4
.
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If we like, we can rescale f and Z near Z = Z0, with the intention of removing the
square-bracketed prefactors of (A.7) and (A.8). The equation for f and Z in (6.1)
would then reduce to an Airy equation, for which we can perform the local Stokes-
line analysis. However, it is faster to observe that near the turning point, the typical
Airy-like switching requires

(A.9)
e−qξ3/2

ξ1/4
Z0−−−−−→

1 > 3

e−qξ3/2

ξ1/4
+ i

eqξ
3/2

ξ1/4
,

or that, in words, the dominant exponential switches on the subdominant exponential
with a prefactor equal to i (see, e.g., section 5.2 in [31]). Using (A.7) to (A.9), we find
that the relation between B1 and B3 is

(A.10)
iB1

Z
4/5
0

exp

(
−
∫ Z0

s

G1 dt

)
=

B3

Z
−23/20
0

exp

(
2i

5Z
5/2
0

)
exp

(
−
∫ Z0

s

G3 dt

)
,

or, writing B1 in terms of C from (A.5), that

B3 =
eπi/4ε8/25C

Z
17/10
0

exp

(
− 2i

5Z
5/2
0

− 1

ε

∫ 0

Z0

S′
1 dt

)

× exp

(∫ Z0

s

G3 dt

)
exp

(∫ 0

Z0

G1 dt

)
.(A.11)

This completely determines the form of 3 , which is switched on by 1 (specified by a
prefactor, C). The last step is to rewrite this result in terms of inner-region variables.
Within the inner region, the exponentials are of the form (5.3), where χ and P are
given by (4.15) and (4.18). We will thus write

(A.12) 3 ∼ Λφ
5/2
0 exp

[∫ z

s

tφ0

5
dt

]
exp

[
− i

ε

∫ z

s

1

φ2
0

dt

]
.

Note that in (A.12), we have selected the negative sign (corresponding to 3 ) and
shifted the initial point of integration. However, since φ0 ∼ √

z − 1/(2z2) + · · · , we
see that neither of the integrals in (A.12) converges as z → ∞. Let us therefore write

(A.13)

∫ z

s

tφ0

5
dt =

∫ z

s

t

5

(
φ0 −

√
t+

1

2t2

)
dt+

2

25

(
z5/2 − s5/2

)
− 1

10
log
(z
s

)
and

(A.14)

∫ z

s

1

φ2
0

dt =

∫ z

s

(
1

φ2
0

− 1

t

)
dt+ log

(z
s

)
.

Substituting z = ε−2/5Z into (A.12), (A.13), and (A.14) and expanding the integrals
gives the leading-order expression

(A.15)
Λs1/10Z23/20

ε23/50
exp

[∫ ∞

s

t

5

(
φ0 −

√
t+

1

2t2

)
dt+

2Z5/2

25ε
− 2s5/2

25

]
× exp

[
± i

ε

∫ ∞

s

(
1

φ2
0

− 1

t

)
dt± i

ε
log

(
ε−2/5Z

s

)
∓ 2i

5Z5/2

]
.
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This expression gives the inner-to-outer limits of the exponentials. We simply need to
match (A.15) with outer-to-inner limit for A3e

S3/ε. Note from Table 1 that as Z → 0,
S′
3 ∼ −i/Z + Z3/2/5, so with A3 given by (A.2), the third exponential tends to

A3e
S3/ε ∼

[
B3Z

23/20

(−Z0)1/4

]
exp

[
−
∫ 0

s1

G3 dt

]
exp

[
2i

5Z5/2

]
× exp

[
1

ε

∫ 0

Z0

(
S′
3 +

i

t

)
dt− i

ε
log

(
Z

Z0

)
+

2Z5/2

25ε
+ · · ·

]
.(A.16)

Matching (A.15) with (A.16), we find

A3e
S3/ε ∼

[
B3

(−Z0)1/4

]
exp

[
1

ε

∫ 0

Z0

(
S′
3 +

i

t

)
dt− i

ε
log

(
1

Z0

)]
× exp

[
−
∫ 0

s

G3 dt

]
=

[
Λs1/10

ε23/50

]
exp

[∫ ∞

s

t

5

(
φ0 − t1/2 +

1

2t2

)
dt− 2s5/2

25

]
× exp

[
− i

ε

∫ ∞

s

(
1

φ2
0

− 1

t

)
dt− i

ε
log

(
ε−2/5

s

)]
,(A.17)

so that we have

Λ =

[
B3ε

23/50

(−Z0)1/4s1/10

]
exp

[
−
∫ ∞

s

z

5

(
φ0 − t1/2 +

1

2t2

)
dt+

2s5/2

25

]
× exp

[
−2i log ε

5ε
+

1

ε

{
i

∫ ∞

s

(
1

h2
0

− 1

t

)
dt+ i log

(
Z0

s

)
+

∫ 0

Z0

(
S′
3 +

i

t

)
dt

}]
× exp

(
−
∫ 0

s

G3 dt

)
.

Finally, writing B3 in terms of C using (A.11) gives

Λ =

[
iCε39/50

Z
39/20
0 s1/10

]
exp

[
−
∫ ∞

s

t

5

(
φ0 − t1/2 +

1

2t2

)
dt+

2s5/2

25
− 2i

5Z
5/2
0

]

× exp

[
−2i log ε

5ε
+

1

ε

{
i

∫ ∞

s

(
1

φ2
0

− 1

t

)
dt+ i log

(
Z0

s

)
+

∫ 0

Z0

(
S′
3 − S′

1 +
i

t

)
dt

}]
× exp

[∫ Z0

0

(G3 − G1) dt

]

or simply that

(A.18) Λ = λ ε39/50 exp

[
−2i log ε

5ε
+

b

ε

]
,

where b is given by

(A.19) b = i

∫ ∞

s

(
1

φ2
0

− 1

t

)
dt+ i log

(
Z0

s

)
+

∫ 0

Z0

(
S′
3 − S′

1 +
i

t

)
dt
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and λ is given by

λ =

[
iC

Z
39/20
0 s1/10

]
exp

[
−
∫ ∞

s

t

5

(
φ0 − t1/2 +

1

2t2

)
dt+

2s5/2

25
− 2i

5Z
5/2
0

]

× exp

[∫ Z0

0

(G3 − G1) dt

]
.(A.20)

Finally, using the expression in (A.12) with Λ given by (A.18), we have thus derived
the previously quoted form of the exponential in (6.15).

Remember that in regards to the selection mechanism, F(n, ε) in (6.18), we only
need the values of Ψ = Arg(λ) and 	(b). Thus, only the argument of C is required
for (A.20), and it is easily verified that Arg(C) = π by comparing the computation
of φ0 in section 4 with the asymptotic expansion in (4.3) (adding multiples of 2π to
Arg(C) does not affect the final result). In Appendix B, we will show how the values
of S′

j can be computed; once obtained, the above integrals can be easily calculated,
and we find that Ψ ≈ −2.7396 and 	(b) ≈ −0.1486.

Appendix B. Computation of Stokes lines and Sj,k(Z). The computation
of the various complex-valued functions needed to produce Figure 6, as well as the
calculation of constants b and Ψ in Appendix A, presents a unique challenge because
of the complicated branch structures involved. In this section, we describe how

Sj,k(Z) =

∫ Z

Zk

S′
j(t) dt

can be computed for j = 1, 2, 3 and k = 1, 2, . . . 5, where S′
j is given by (6.5a, b). Once

Sj,k is computed, Stokes lines can then be found using (6.12), and b and λ calculated
from (A.19) and (A.20). The challenge, however, is in controlling the eventual branch
structure of S′

j , which involves the composition of complex powers related to its six
branch points. Let us illustrate this difficulty with a simple example. Consider the
composition

(f ◦ g)(z), where g(z) = z3 and f(z) = z1/2.

We thus compute g(z) first, then apply f to X = g(z). If we assume that the branch
cuts of X are along the negative real axis, i.e., 	[g(z)] = 0 and �[g(z)] < 0, then
we find that three cuts are required in the original z-plane: ones along rays at ±π/3
and π. However, the alternative interpretation of h(z) = z3/2 requires only a single
cut and gives a much simpler branch structure. The two functions h and f ◦ g are
clearly not equal, but may still correspond to legitimate analytic continuations. We
are free to use whichever one is the simplest, so long as the resultant function has the
correct values along the original contour from where we begin the continuation.

Consider now the computation of S′
j in (6.5a, b), which corresponds to analytic

continuation from Z ∈ R+. We begin by computing β using (6.6) with the branch
cuts chosen so that they tend radially outwards from each of the turning points, and
with the cut from Z = 0 going straight down. Next, β1/3 is computed with the cut
along 	[β(Z)] = 0 and �[β(Z)] < 0. This is shown in Figure 8 (left). As we can
see, this introduces three new cuts in the Z-plane, coming from the origin. In order
to retrieve an alternative definition of β1/3 which has a simpler branch structure, we
proceed along contours with fixed |Z| and encircle the origin. When one of the three
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0

π
2

π

3π
2

0

π
2

π

3π
2

Fig. 8. Contour plots of 	[β1/3(Z)] from (6.6), shown in the complex Z-plane with 0 < |Z| < 2.
In the left plot, three extraneous branch cuts are visible, while in the right plot they have been removed
in favor of a simpler analytic continuation.

0

π
2

π

3π
2

0

π
2

π

3π
2

Fig. 9. (Left) Contour plots of 	[S′
1] from (6.5a), and (right) 	[S1,0 −S3,0] from (6.7), shown

in the complex Z-plane with 0 < |Z| < 2. In the right plot, the contour lines from the turning point
in the first quadrant form the 0 > 3 and 3 > 1 Stokes lines.

extraneous cuts is encountered, we thereafter set the argument of β1/3 to its original
value, plus a multiple of 2πi/3. Finally, we verify that this new function is real along
Z ∈ R

+ and is thus the correct analytic continuation. The function is shown in
Figure 8 (right). With β1/3 successfully computed, S′

j follows immediately (shown
in Figure 9, left) and, moreover, the integral in (6.7) can be calculated by following
radial and angular paths which avoid the existing cuts. A typical result is shown in
Figure 9 (right).
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