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1. Introduction

The physical motivation of this work stems from a series of theoretical and experimental studies, beginning with the
1967 paper by Chester [1]. There, a theory was presented to describe the resonant sloshing of water in a tank forced by
a periodic wavemaker. In 1986, it was shown in [2] that this problem can be modelled as a periodically forced, damped,
Korteweg-de Vries (KdV) equation.

In this paper, we will instead consider the steady, periodic solutions of a more generalized KdV variant: a periodically
forced extended Korteweg-de Vries equation with Burgers Damping (eKdVB),
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dispersion  detuning  quad. and cubic nonlinearity =~ damping forcing

The parameters in (1) are chosen with the above water-wave problem in mind: x is confined within the interval [0, 2L], f' (x)
corresponds to an arbitrary forcing with period 2L, y and p provide the dispersive and diffusive effects, respectively, and
A measures the amount of detuning from resonance. The quadratic and cubic nonlinearities are represented by « and g,
respectively, and can be used to further classify the various KdVB-type equations. If 8 = 0, (1) reduces to the forced KdVB
equation, while if @ = 0, (1) reduces to a forced modified KdVB equation (mKdVB).! But the above water-tank system is
certainly not the only scenario where equations of the KdVB-type arise; physical scenarios governed by KdVB, mKdVB, or
eKdVB equations can be found, for example, in the works of Marchant and Smyth [3], Smyth [4], Wu [5], and Grimshaw
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et al. [6]. However, the types of solutions which arise in these systems are highly dependent on the relative magnitude of
the various parameters; certain choices are more amenable to standard analysis, while others are more difficult.

It should also be noted that, in a physical sense, Burgers damping is not the only relevant form of dissipation which may
arise. For example in the case of a forced shallow tank, Chester [1] derives, in detail, an expression for the dissipation at the
walls through integration across the boundary layer. However, it has also been observed (e.g. see [7]) that, in the weakly
dissipative regime, the particular form of damping does not qualitatively impact the nature of the steady solutions, and
rather ensures transition from an arbitrary initial state to a unique steady solution. Therefore, the Burgers term is typically
employed, as it provides a general model for dissipative effects while being much more amenable to analysis.

In problems where both nonlinear and forcing effects of (1) are strong - such as for the motivating water-wave problem
—itis known that a rich array of steady solutions emerge. And, although analytic studies in this regime have been performed,
for instance in [7,8], they still remain limited in terms of their scope. Moreover, the interplay between dissipative and
dispersive effects has also been studied in various regimes, beginning with the work of Johnson [9]. Amundsen, Cox, and
Mortell [10] have developed a general framework based on singular perturbation and asymptotic matching in the context
of the forced KdVB. By extending this to the more general eKdVB equation, we can further develop this methodology.
Additionally, this provides a more global perspective of the similarities and differences between the various KdV-type
equations. Although individual studies of the forced KdVB, mKdVB, and eKdVB exist, there are few that have sought to
compare and contrast these equations under a collective heading. Our work in this respect is distinct and revealing.

2. Analytic approximation of steady solutions

We first return to the eKdVB (1) where, in order to ensure boundedness of the long-time solutions, it is assumed that the
periodic forcing, f'(x) has zero mean; physically, this often corresponds to a global constraint such as mass conservation.
Now integrating (1) over the domain and enforcing periodicity in x for u, we may then assume, without loss of generality,
that u satisfies the global condition,

2L
/ u(x, t)dx = 0. (2)
0

While the question of unsteady solutions is also interesting and there are indeed cases where aperiodic and even chaotic
behavior is observed (see e.g. [11]), we restrict our focus to cases where the dissipative effects have rendered solutions
steady in the limit t — oo.

Letting u; = 0, integrating, and rearranging (1) yields the following steady formulation,

B s a5
Vibe F plly = TU”+ U +Au—(f(x)+0), (3)
where f (x) is taken as an anti-derivative of f'(x) having zero mean and C is a constant of integration. Integrating once more
and using both periodicity of u and the mean condition (2), we can express the constant as, C = i OZL (a% + ﬁ%)dx.

2.1. Deriving the leading order non-dispersive solutions

In the context of the physical systems discussed in Section 1, we will consider cases where the dissipative effects are
small (y < 1), the diffusion is of the same order, ©# = O(y) = vy for some constant v = O(1), and all other parameters
(including the forcing) are assumed of order unity. We now seek to obtain approximate solutions, asymptotically valid in
the limit that y tends to zero.

Asimple perturbation expansion, u(x) = ug(x)+./yu1(x)+yua(x) +- - - applied to (3) yields the leading order equation,

B s

o
34 + Eué +Auy— (fx) +C) =0, (4)

which captures the crucial balance between the effects of the nonlinearity and forcing. If 8 = 0, the problem reduces to
that of a regular KdVB and this special case is reviewed in Section 3. But provided 8 # 0, the leading order non-dispersive
solutions ug can then be chosen as one of three possible solutions of Eq. (4),

1 ik 4AB — 2 i
wo, = [ p'3e% (LN el k=012 5)
2B p'?
where,
p = 122G+ 6Aaf — o’ + 2v/M8B,
M = 48 (44° + 9BG%) — 3a (2Ga* + A’a — 12A8G) .

and where we have used the substitution G = f(x) + C.
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Fig. 1. Phase plane configuration of the undamped (left) and damped (right) mKdVB equation. The non-dispersive solutions (fixed points) will shift in
response to the forcing.
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Fig. 2. Partial real non-dispersive solutions for the mKdVB equation with 8 = 3, A = —1, f(x) = cos(;rx), and C = 0. The thin, thick, and dashed lines

correspond to k = 0, 1, and 2, respectively. In Section 2.2, we will derive the dispersive solutions for layers Il and IV.

For fixed x, these non-dispersive solutions ug, are precisely the fixed points of the phase plane of Eq. (3). The forcing
can then be visualized as producing a slow, horizontal shift of the fixed points; solutions may begin at such a point, but
will slowly vary in response to the forcing, thus producing three non-dispersive solutions. For example, Fig. 1 illustrates the
phase plane for the mKdVB (8 = 3, « = 0) in the cases with and without damping.

However, not all such solutions provided by (5) satisfy the zero-mean condition and, in fact, it is not even assured that
these solutions will remain real and differentiable. Indeed, there are generally two critical values, A = A;;, for which
the non-dispersive solutions first fail as leading order approximations of (3). When 8§ = 0 (KdVB), these critical values
lie at A1, = £,/—2aGmax/min, Where Gmax/min denotes either the global maximum or minimum of G, chosen so that the
argument of the square root is positive. This corresponds to the point where the non-dispersive solutions cease to be entirely
real. When g # 0, the two critical values are A = % and A = Ay where M(Ay) = 0, corresponding to when the quadratic
roots of (4) transition from being complex to real and vice versa. The interval delineated by these two critical values forms
the resonant band.

Thus, while outside of the resonant band, there is always one non-dispersive solution which is entirely real and satisfies
the mean condition, for other intermediary values of A, a regular perturbation approach fails and dispersive effects must
be taken into account. Fig. 2 provides a striking example of this scenario, where the layers for which the non-dispersive
solutions fail are clearly delineated. Note in this, and all subsequent examples, the forcing f (x) = cos(wx) with associated
domain half-width L = 1.

2.2. Deriving the leading order dispersive solutions

For solutions within the resonant band, we turn our focus upon a layer at x = x; where dispersive effects cannot be
neglected at leading order. Within this layer, a new stretched coordinate is introduced, X = "“Tgf) +wr )+ /yws(X)+- -
so that the solutions u = u(x, X) are now assumed to vary on both a slow (x) and fast (X) coordinate scale. Applying a
perturbative approach u(x, X) = up(x, X) + /yu1(x, X) + yux(x, X) + - - -, it can be seen that upon integration, (3) yields
to leading order,

B 4

o
wPupy = §u3+ g“o"’A“(z) —2(f(x) + C)up + E, (6)



P.H. Trinh, D.E. Amundsen / Journal of Computational and Applied Mathematics 234 (2010) 1788-1795 1791

where E = E(x) is a further constant of integration. By appealing now to the bounded and zero-mean nature of the solutions,
it can be further assumed that the four roots of (6) are real, allowing us to write the solution in an explicit form (see [12]),

—(b —d)c 4+ sn?(B(X — &), m)(b — ¢c)d

—(b—d) +sn2(BX —8),m)(b—c) ’

via—c)b—d S C ] Clt)
20, ' C(@a—-ob—-d’

where a < b < ¢ < d are the roots of the quartic polynomial in (6). It is important to notice that these quartic roots, as well
as the other parameters of the solution, § and w will, in general, slowly vary in response to the forcing.

In order to account for the nature of this slow variation, we investigate the secularities arising at subsequent orders.
First, as noted in [ 13], the periodicity of the solutions must be constant with respect to the slow variation, otherwise secular
growth occurs. Thus by the periodicity of elliptic functions, T = @ = %’}%w’] where T is an arbitrary constant
associated with the period in X, and K (m) is the complete elliptic integral of the first kind. Choosing, for convenience, T = 2,
we obtain the expression for the leading order variation of the dispersive layer coordinate,

;o Aa=o)b—d
=T ®

Next, to determine the modulus, m(x) in terms of the spatial variation, we consider the equation which arises at 0(,/y),

ug(x, X) = (7)

B =

2 2
— wil1xx + Auq + auguq + ﬁuom = 26()/160/2140)()( =+ 2a)/1u0xx =+ C()/I/UOX + Ua)éllox. (9)

Noting that the solution of the homogeneous self-adjoint problem is ugy, we take the standard functional inner product
of (9) and apply periodicity considerations to obtain the solvability condition,

d T T
— ) 2 dX — v 2dXx =0 10
a w1 Upx v, UpxdA =U. (10)
X 0 0

This equation is easily integrated, yielding

T L
w;/O 12,dX = ke 7%, (11)

where « is a constant of integration. This serves two purposes: It provides a location for the layer, and it relates the modulus
to the spatial variation x provided that a value of k is determined.

In a physical sense, this equation corresponds to the slow variation in energy induced by the dissipation and may also,
for instance, be derived via a modulation theory approach based on the underlying conservation laws. For the general
theory, see [14] and, for application in the context of the weakly damped KdVB, see [15]. Our approach, based on a stretched
coordinate and underlying asymptotic expansion, provides the same result but with a more precise notion of the relative
scales involved in the problem and, by retaining the fast variation, allows for qualitative understanding of the dispersive
layers via the phase plane. Moreover, as will be seen in the following section, it also facilitates matching with the non-
dispersive layers.

2.3. Matching of solutions

At this point, we have managed to derive the explicit formulation of the rapidly varying dispersive solution, but several
parameters have yet to be determined: «, the constant of the solvability condition (11); §, the phase shift; and m(x),
the modulus. These parameters will be determined by matching the inner and outer solutions across the boundary layer
interface.

2.3.1. Determining k by enforcing a matching

Recall our discussion of the phase plots of Fig. 1. The non-dispersive solutions of (5) correspond to fixed points which
move slowly in response to the variation of the forcing. Consequently, solutions within the dispersive layer correspond to
trajectories beginning and ending at a fixed point, configured in such a way as to satisfy the mean condition (2).

Thus, in order for a successful match to occur, we must require the solution trajectory to smoothly enter the separatrix
leading into the appropriate non-dispersive solution at the point of matching. Formally, this produces the requirement that
the modulus of the elliptic functions in (7) tends to unity m(x) — 1 over the dispersive-to-non-dispersive interface.

Now determining the value of « in the solvability condition (11) is easily done: Given the locations of the matching
X, < X;j < Xi,, we calculate the value of ] (x) and the four roots a, b, c, d using the condition m(x) — 1atx = x;, X;,. This
completely determines our dispersive solution g and now « is given by the solvability condition (11) evaluated at the point
of matching. Once a value of x has been determined, both / (x) and m(x) are easily solved as functions of x: the w; using
(8), and the modulus m(x) using (11).
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Fig. 3. Single (left) and multiple (right) orbit solutions of the mKdVB.

2.3.2. Determining the phase shift §

The phase shift, in conjunction with the location of the boundary layer x = x;, and arising in the definition of the scaled
parameter, X, must be chosen correctly in order to match the phase of the dispersive solution to the non-dispersive solution
in the limit as the modulus approaches unity. Note, then, that for a successful match, we will also require an appropriate
choice of § such that only an integer number of peaks exist within the dispersive layer. In general, however, the algebraic
complexity of the solutions (7) necessitates numerically solving for the phase §.

3. Special cases of the eKdVB

Before turning to the general extended KdVB, we first study the two extremal cases where only a single nonlinearity is
present. A central theme throughout this work is the notion that the solutions of the forced eKdVB can be qualitatively and
broadly classified according to its degree of KdVB or mKdVB-like behavior. By understanding these extremal cases, we gain
much insight into the underlying structure of the more general eKdVB.

3.1. The modified KdVB equation (o = 0)

In the case @ = 0, the steady-state eKdVB (3) reduces to the mKdVB,

—yuxx+§u3+Au—uux=f(x)+C, (12)

which is simply one of the many variants of the well known Duffing equation. The mKdVB possesses two saddles in the
phase plane flanking a lone nodal point. Three non-dispersive solutions are provided by (5) and they are invalid within
the resonant band, where all three solutions fail to be real in various subintervals of [0, 2L]. In these cases, the dispersive
solutions are provided by a complex expression of elliptic functions (7) which involves transitions between both saddles.

The simplest transition is one in which only a single period is traversed before returning to the non-dispersive solution.
In this case, the solution begins at a saddle point, follows a trajectory close to the heteroclinic orbit, and matches with the
flanking saddle point. In fact, to leading order y — 0, and m(x) — 1, the dispersive solutions centered at x = § are
approximated by the heteroclinic itself,

e =% |2 tann [ [~ A= (13)
uheterocllmc(x) - F an g(x ) )

where the square root arguments are positive for parameters within the resonant band and the choice of sign 4 correspond-
ing to the upper and lower trajectories of the heteroclinic.

However, if the boundary layer is sufficiently large, multiple orbits are then possible, and the slow variation in the forcing
forms a crucial element behind our multiple scales analysis in Section 2. In this case, transitions will consist of a solution,
leaving a saddle point along the separatrix, orbiting the nodal point a specified number of times, and returning smoothly to
the flanking saddle.

Fig. 3 depicts typical single (left) and multiple (right) orbit cases for the mKdVB equation near resonance. In the case of
the left figure, only a single jump occurs between non-dispersive media and the trajectory follows closely with the hetero-
clinic orbit. In contrast, the right figure depicts a trajectory that orbits the nodal solution one and a half times before finally
matching with the flanking saddle.
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Fig. 4. Resonant response for the eKdVB equation with y = .005, © = 0.0015, f (x) = cos(wx),« = 2,and § = 0,0.1,0.1037.
3.2. The KdVB equation (8 = 0)

In the case 8 = 0, the eKdVB (3) reduces to the well-known KdVB,
— VlUxxx + OUUy + AUy — [l =f/(X). (14)

A detailed asymptotic analysis of the forced KdVB near resonance is found in [10], and indeed our methodology and
development in the previous section extends and compliments their work to the more general eKdVB. For the KdVB,
however, the solutions simplify considerably due to the fact that now there are only two non-dispersive solutions: one
corresponding to a saddle, the other to a stable node. The leading order dispersive solutions found by solving (5) may also be
expressed in terms of Jacobi Elliptic functions but, here, the limiting case of a single period now corresponds to a homoclinic
orbit (in the limiting form of sech? functions) about the nodal solution. More generally, dispersive solutions correspond to
multiple orbits about the nodal solution, beginning and ending at the saddle point.

4. The general extended KdVB («, 8 # 0)

When both quadratic and cubic nonlinearities are present, a much richer array of solutions arise, the nature of which
depends on the relative strengths of each parameter. The principle result of our work concerns the connection between the
three KdV-type equations and, in particular, the results of examining the effects as the nonlinearity transitions from purely
quadratic (KdVB) to purely cubic (mKdVB), and the combined regime in between (eKdVB).

4.1. A transformation from eKdVB to mKdVB

Itis well known that the linear transformation, v = u+ i—; can be applied to recast the eKdVB (3) into an mKdVB equation,

2

B 5 3
—V Uxx = A— — - x — C7
YUy + 3u + 168 u— puy = f(x) +

where the mean condition (2) changes to, fOZL v(x)dx = ;—ZL. Although analytic solutions of the eKdVB can be treated with the
mKdVB development of the previous section, the transformation does not lend itself to a significant grasp of the qualitative
structure of the solutions. Moreover, the change in the mean condition also changes the class of allowable solutions, and so
we will primarily concern ourselves with the qualitative aspects of the solutions.

4.2. Qualitative structure of the eKdVB

General eKdVB behavior can be classified broadly into various subcategories, depending on the relative magnitude of the
nonlinearities, « and B. For example, the regime that occurs in the transition from eKdVB to mKdVB (¢ < 1, 8 ~ 0(1)) is
unremarkable — the effect of the (nearly negligible) quadratic nonlinearity is only a small asymmetric repositioning of the
fixed points in the phase plane.

However, the same cannot be said of the transition from KdVB to eKdVB (a¢ ~ 0(1), 8 < 1). The qualitative nature of
these solutions can best be understood by examining the resonance curves as the « and  parameters are varied, such as
in Fig. 4. Here, the 2-norm of the solutions, ||u||; is shown as the detuning, A varies. Notice the two distinct regions in each
resonant response: the edges |A| >> 0 where the non-dispersive solutions are valid, and the resonant band near A = 0
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Fig. 5. An eKdVB solution for y = 0.0005, . = 0.0015, f (x) = cos(wx),« = 2, 8 = 3,and A = —4.19 depicting combination effects.

2571

u(z)

25,

20
15¢
1L
051
ol

25 -2.5

0 02 04 06 08 1 12 14 16 18 2 0 0‘.2 0‘.4 d.6 d.S ‘I l‘.2
T T

I‘.4 1‘.6 f.S ‘2

Fig. 6. Approximate analytic (dotted) and numerical (solid) solutions for the mKdVB with y = 0.005, 8 = 3, u = 0.0015, f(x) = cos(;rx) and the two
cases A = —5 (left) and A = —4.57 (right). The solutions show excellent agreement.

where the dispersive regime is in effect. Each ‘finger’ in the graph indicates a qualitatively different response, corresponding
to solutions with different trajectories in the phase plane.

As the cubic nonlinearity increases, the fingers bend backwards, but the qualitative nature of the solutions are still KdV-
like, and the solutions unaffected by the third, distant, saddle. Then, at some critical value of §, the resonant response
changes drastically, marking the first point that solutions begin interacting with the third (mKdVB) saddle. This critical
value corresponds to the emergence of a heteroclinic orbit and, as such, is associated with the smallest 8 such that the
second saddle intersects the homoclinic. Using (5), with C and A taken to be the values associated with the point at which
the homoclinicis at its maximum extent and the parameter values as noted, this critical value is approximately 8. &~ 0.1026,
in agreement with what is observed.

Finally, in the ‘fully’ eKdVB regime, where both cubic and quadratic nonlinearities are dominant, we see solutions with
a combination of effects. Solutions of the eKdVB can be seen to exhibit behavior either of the KdVB-type, where boundary
layer transitions occur from and to a single saddle point, or of the mKdVB-type, where solutions transition between distinct
saddles. Fig. 5 provides an example of an eKdVB solution which possesses two layers with different mKdVB-like transitions,
as well as a third, homoclinic KdV-like layer in the centre.

We emphasize that the leading order asymptotic behavior of these solutions can be produced through the theory of
Section 2.2 (see [16]). Moreover, the location of the bifurcation seen in Fig. 4 corresponds to the case where the cubic
nonlinearity is sufficiently large that a heteroclinic solution between the two saddles is permitted.

5. Discussion

By applying the methodology developed in the previous sections, we can see that the agreement between numerical
and approximate solutions is excellent for a wide range of parameters. Fig. 6 provides an example of the high accuracy
of approximating the solution using leading order approximations. In particular, we have generated approximations to
solutions of (3) for y = 0.005,« = 0,8 = 3, © = 0.0015, f(x) = cos(wx), and the two cases A = —5 (left) and
A = —4.57 (right).

However, there are still limitations. While the outlined methodology is successful in developing asymptotic
approximations for most solutions, it is implicit in the procedure that dispersive layers are independent and can be studied
individually. But this local and layer-based approach will fail in cases where dispersive layers first separate or coalesce. In
such cases, a more global approach may be required.
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Nevertheless, we emphasize the effectiveness and flexibility of the techniques developed here in providing a framework
for constructing steady resonant solutions of KdV-type equations, as well as providing much insight into the many subtle
connections and distinctions between the forced KdVB, mKdVB and the eKdVB equations.
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