====== Turing Instabilities Part 2: Gierer-Meinhardt Model ====== The previous section derived the conditions that are needed for a Turing instability to exist. Now, let us step through an example in order to see how this works in practice. We will consider the Gierer-Meinhardt model, which is a reaction diffusion system that describes an activator-inhibitor interaction. It is one of the equations that have been used to model morphogenesis and patterns in development, though experimental evidence is still lacking to support these models in full. A slightly simplified version of the original Gierer-Meinhardt model [(gm_1972)] is, \begin{gather} \label{eqn:gmor1} \frac{\partial u}{\partial t} = \frac{ u^2}{v} - bu + D_u \frac{\partial^2u}{\partial x^2}, \\ \label{eqn:gmor2} \frac{\partial v}{\partial t} = u^2 - v + D_v \frac{\partial^2v}{\partial x^2}. \end{gather} where we will call u our "activator" and v our "inhibitor, $D_u$ and $D_v$ are diffusion constants, and $b$ is the rate at which the activator $u$ will naturally degrade. ==== Stability without Diffusion ==== We can picture the diffusionless case of this system as the following picture, where the terms in the equation correspoding to the given connection are written in green: {{ dynsys:tstwo:gmModel.png }} Since the diffusionless model looks like, \begin{gather} \label{eqn:gmsta1} \frac{\partial u}{\partial t} = \frac{ u^2}{v} - bu, \\ \label{eqn:gmsta2} \frac{\partial h}{\partial t} = u^2 - v, \end{gather} We see that the steady state is given by $u_0 = 1/b$ and $v_0 = u_0^2 = 1/b^2$. Linearizing about the steady state $[u_0, v_0] = [1/b, 1/b^2]$ (i.e. by Taylor expanding about the steady state and ignoring higher order terms), we obtain that the Jacobian is, \begin{equation} \left.J\right|_{(1/b, 1/b^2)} = \left. \left(\begin{array}{cc} -b + \frac{2u}{v} & - \frac{u^2}{v^2} \\ 2u & -1 \end{array} \right) \right|_{(1/b, 1/b^2)} = \left(\begin{array}{cc} b & - b^2 \\ \frac{2}{b} & -1 \end{array} \right). \end{equation} We then check that it is stable recalling from the previous section that this means $tr(J) <0$ and $det(J) >0$. Therefore we require that, * $tr(J) = b-1 < 0$ so $b<1$ * $det(J) = b >0$ so $b>0$ This constrains the value of the parameter $b$ to $0 0$, $i\in\{1,2\}$. Notice that $tr(J) = b-1 - q^2(D_u+D_v)$ is always negative since $b<1$ by our condition above, and $D_u$, $D_v$ are both positive by definition, this condition is always true. In order for the system to become unstable, we need, \begin{equation} det(J) = H(q^2) = (b - D_uq^2)(-1-D_vq^2) +2b <0 \end{equation} {{dynsys:tstwo:quadratic.mp3}}
Notice that the determinant is a quadratic function with respect to $q^2$. In the gif above you can see a graph of $H$ for different values of b between $0$ and $0.35$. We will not get patterns for small values of b, but we will get patterns once the quadratic crosses the x-axis (i.e. has real nonnegative roots). We will get two real roots for the quadratic when, \begin{equation} -bD_v+D_u > 2\sqrt{(D_uD_v)b}. \end{equation} ==== Spatial Domain ==== If we apply periodic boundary conditions over a domain $x\in [0,L]$, the separable solution will then be of the form \begin{equation} \label{eqn:sumFour} \sum_k A_k e^{\lambda(q^2)t} cos(qx), \end{equation} and over the allowed values of k i.e. \begin{equation} q = \frac{n\pi}{L}, n \in \{1,2,...\}. \end{equation} Since we want patterns to form, then the smallest allowed $L$ has to be such that \begin{equation} q^2 = \frac{\pi^2}{L^2} > \frac{A + \sqrt{A^2-B}}{2D_uD_v} = q^2_+, \end{equation} where $A = bD_v -D_u$, $B = 4bD_uD_v$, and $q^2_+$ is the bigger of the two solutions of $H(q^2)$. In other words, our critical length will be $L_c = \frac{\pi}{q_+}$. {{dynsys:tstwo:gmoned.mp3}} {{ dynsys:tstwo:80v3.gif}} {{ dynsys:tstwo:10.gif }} The two animations visualize the spatial dependence of patterns. For both animations, the initial conditions are small perturbations away from the steady state. The first animation takes a length $L> author: Gierer A. and Meinhardt H. ref-author: Gierer and Meinhardt title: A theory of biological pattern formation journal: Kybernetic volume: 12 year: 1972 )]