Philippe H. Trinh

Dr. Philippe H. Trinh
Departmental Lecturer in Mathematical Modelling
Mathematical Institute
University of Oxford
Oxford, Oxfordshire, UK

Mathematical Institute Profile
Lincoln College Profile
+ Curriculum Vitae (2016)

30 January 2017: On reduced models for gravity waves generated by moving bodies

I'm happy to announce a recent paper published in the Journal of Fluid Mechanics. There is an interesting story behind this paper.

(Left) Ernie Tuck (1939–2009) (Right) Marshall Tulin (1926–)

Since around 2007–2010, I'd often play with certain reduced models for studying gravity wave generation by two-dimensional bodies. These reduced models you can derive using some more modern techniques in asymptotics, but actually I had noted that in the early 90s, the late Ernie Tuck from the University of Adelaide had published some thoughts on similar reductions. I had thought that this was the end of the story.

A few years ago, I spotted a curious question that was written in a transcription of audience questions in a conference where Tuck had presented his research (in fact, such transcriptions are quite rare in this day and age). Marshall Tulin, another famous hydrodynamicist from Santa Barbara, had asked the following question:

“Isn't it true that the two dimensional wavemaker problem can be presented in terms of an ordinary differential equation in the complex domain, at least to some higher order of approximation?”

Tuck had replied that he didn't know the answer, and the matter was apparently left at that. However, Tulin's question was certainly a deep one, and the fashion in which it was asked led me to believe that Tulin had been on a similar trail even before 1991. But contacting Tulin was no easy feat; though he was listed as Emeritus at Santa Barbara, my first email had bounced. In the end, I managed to locate a personal email, and so I sent off a letter asking if he could fill me in on what his intention was behind the question.

Tulin was quite pleased to have been asked for more details (as it had been over two decades since that conference!). He told me that he had, in fact, published a report in 1983 for the 14th Symposium on Naval Hydrodynamics where he laid out a particularly involved reduction of the water wave equations.

He explained that nobody had really picked up on the 1983 paper (1 current citation!), even though there were a series of questions he had asked and a series a results he had presented that had seemed of some importance. He encouraged me to look up the manuscript and close the chapter, if I could.

And so I did. The result is this most recent paper.

8 September 2016: A topological study of gravity free-surface waves generated by bluff bodies using the method of steepest descents

This paper, now published in the Proceedings of the Royal Society A (PRSA) has a few interesting distinctions. It's the first paper I've published in PRSA—but hopefully not the last as it's certainly a strong journal with an illustrious history. It's the first solo paper I've published. And it has the longest title of any other paper I've worked on.

In any case, it's a paper where I explore exponential asymptotic techniques for free-surface flows (now well known) from a slightly different viewpoint. It turns out that the situation of gravity waves permits the governing equations to be re-formulated in a particularly simple way: that of a first-order nonlinear differential equation. In this paper, I show how the differential equation is studied using steepest descents. What results is a visual and beautiful way of understanding wave-structure interactions through a correspondence with the topology of certain Riemann surfaces (seen above).

You can download a copy of the paper here. This paper technically forms Part 2 of a two-part series of which the first is still in review.

01 June 2016: New singularities in Stokes waves

I'm happy to announce the publication of a paper in collaboration with Samuel Crew (Lincoln College, Oxford). In this paper, we revisit the classic problem of a periodic wave travelling without change of form, which was first considered by Stokes in the late 19th century.

Interestingly, there are still several unanswered questions regarding this canonical example of a water wave. Some of these questions concern the existence of the singularities in the complex plane, along with their behaviour as the wave steepens. You can read the paper here.

18 May 2016: Jet flows from angled nozzles


A late congratulations to second-year student Tom Chandler (Lincoln College, Oxford) for successfully presenting his poster Jet flows from angled nozzles at the British Applied Mathematics Colloquium 2016 that took place last month in Oxford. Tom's work studies the situation of fluid ejected from an angled nozzle and driven by gravitational forces. It turns out that there are some rather non-trivial issues concerning the angle that a liquid separates from a solid, and this deals with the interplay between geometry, surface tension, and gravity. Tom's poster forms part of his third year dissertation project and will continue to a summer research project at the Mathematical Institute.

Jan 2016: Spot patterns on the surface of the sphere

I'm happy to announce the publication of my paper in the journal Nonlinearity with Michael J. Ward (University of British Columbia) on localized spot patterns on the surface of the sphere. In this paper, we develop the detailed asymptotics that describe the slow dynamics of spot patterns modelled by a system of reaction-diffusion equations. The interesting twist is that when the patterns occur on a surface of non-zero curvature, the methodology must account for higher-order terms due to the changing geometry. It is a wonderful paper with some beautiful mathematics and beautiful pictures.

June 2015: Fluids and elasticity in France

I'll be attending the Fluid and Elasticity 2015 conference, from June 22-24 in Biarritz, France, and presenting some joint work with Stephen K. Wilson (Strathclyde University) and Howard A. Stone (Princeton University).

May 2015: Two new papers published

I'm happy to announce the publication of two new papers. The first paper is published in Nonlinearity and is on the topic of developing exponential asymptotics for problems with coalescing singularities (motivated by the study of ship waves, above left) with Jonathan Chapman (Oxford). The second paper, published in the Journal of Fluid Mechanics, and collaboration with Weiqing Ren (National University of Singapore) and Weinan E (Princeton) seeks to explain the importance of distinguished limits in the classical contact line problem. Both papers can be downloaded from the research section.